ﻻ يوجد ملخص باللغة العربية
We consider the adiabatic pumping of charge through a mesoscopic one dimensional wire in the presence of electron-electron interactions. A two-delta potential model is used to describe the wire, which allows to obtain exactly the scattering matrix coefficients, which are renormalized by the interactions. Two periodic drives, shifted one from another, are applied at two locations of the wire in order to drive a current through it in the absence of bias. Analytical expressions are obtained for the pumped charge, current noise, and Fano factor in different regimes. This allows to explore pumping for the whole parameter range of pumping strengths. We show that, working close to a resonance is necessary to have a comfortable window of pumping amplitudes where charge quantization is close to the optimum value: a single electron charge is transferred in one cycle. Interactions can improve the situation, the charge $Q$ is closer to one electron charge and noise is reduced, following a $Q (1-Q)$ behavior, reminiscent of the reduction of noise in quantum wires by $T (1-T)$, where $T$ is the energy transmission coefficient. For large pumping amplitudes, this charge vanishes, noise also decreases but slower than the charge.
The combined presence of a Rashba and a Zeeman effect in a ballistic one-dimensional conductor generates a spin pseudogap and the possibility to propagate a beam with well defined spin orientation. Without interactions transmission through a barrier
Single crystal ZnO nanowires doped with indium are synthesized via the laser-assisted chemical vapor deposition method. The conductivity of the nanowires is measured at low temperatures in magnetic fields both perpendicular and parallel to the wire a
One-dimensional lattice with strong spin-orbit interactions (SOI) and Zeeman magnetic field is shown to lead to the formation of a helical charge-density wave (CDW) state near half-filling. Interplay of the magnetic field, SOI constants and the CDW g
In the integer quantum Hall (IQH) regime, an antidot provides a finite, controllable `edge of quantum Hall fluid that is an ideal laboratory for investigating the collective dynamics of large numbers of interacting electrons. Transport measurements o
We use microscopic linear response theory to derive a set of equations that provide a complete description of coupled spin and charge diffusive transport in a two-dimensional electron gas (2DEG) with the Rashba spin-orbit (SO) interaction. These equa