ترغب بنشر مسار تعليمي؟ اضغط هنا

Oxygen molecular plasma at ambient temperature and elevated or high pressure

94   0   0.0 ( 0 )
 نشر من قبل Yuri Kornyushin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yuri Kornyushin




اسأل ChatGPT حول البحث

Usually microscopic electrostatic field around ions is neglected when the ionization energy is concerned. The ionization energy is considered to be equal to that of a separate atom (molecule). Here the energy of the electrostatic field around ions is taken into account. It is shown that the energy of this field contributes to decrease in the effective ionization energy. The effective ionization energy may turn to zero at some critical concentration of delocalized electrons. This leads to a complete ionization of the atoms (molecules). Concrete calculations were performed for oxygen molecular gas.



قيم البحث

اقرأ أيضاً

252 - Liangzi Deng 2021
To raise the superconducting-transition temperature (Tc) has been the driving force for the long, sustained effort in superconductivity research. Recent progress in hydrides with Tcs up to 287 K under 267 GPa has heralded a new era of room-temperatur e superconductivity (RTS) with immense technological promise. Indeed, RTS has lifted the temperature barrier for the ubiquitous application of superconductivity. Unfortunately, formidable pressure is required to attain such high Tcs. The most effective relief to this impasse is to remove the pressure needed while retaining the pressure-induced Tc without pressure. Here we show such a possibility in the pure and doped high-temperature superconductor (HTS) FeSe by retaining, at ambient via pressure-quenching (PQ), its Tc up to 37 K (quadrupling that of a pristine FeSe) and other pressure-induced phases. We have also observed that some phases remain stable without pressure at up to 300 K and for at least 7 days. The observations are in qualitative agreement with our ab initio simulations using the solid-state nudged elastic band (SSNEB) method. We strongly believe that the PQ technique developed here can be adapted to the RTS hydrides and other materials of value with minimal effort.
The hydroxyl radical is the primary reactive oxygen species produced by the radiolysis of water, and is a significant source of radiation damage to living organisms. Mobility of the hydroxyl radical at low temperatures and/or high pressures is hence a potentially important factor in determining the challenges facing psychrophilic and/or barophilic organisms in high-radiation environments (e.g., ice-interface or undersea environments in which radiative heating is a potential heat and energy source). Here, we estimate the diffusion coefficient for the hydroxyl radical in aqueous solution, using a hierarchical Bayesian model based on atomistic molecular dynamics trajectories in TIP4P/2005 water over a range of temperatures and pressures.
X-ray diffraction and Raman scattering measurements, and first-principles calculations are performed to search for the formation of NaCl-hydrogen compound. When NaCl and H$_{2}$ mixture is laser-heated to above 1500 K at pressures exceeding 40 GPa, w e observed the formation of NaClH$_{textit{x}}$ with $textit{P}$6$_{3}$/$textit{mmc}$ structure which accommodates H$_{2}$ molecules in the interstitial sites of NaCl lattice forming ABAC stacking. Upon the decrease of pressure at 300 K, NaClH$_textit{x}$ remains stable down to 17 GPa. Our calculations suggest the observed NaClH$_{textit{x}}$ is NaCl(H$_{2}$). Besides, a hydrogen-richer phase NaCl(H$_{2}$)$_{4}$ is predicted to become stable at pressures above 40 GPa.
Autoignition delay experiments for the isomers of butanol, including n-, sec-, tert-, and iso-butanol, have been performed using a heated rapid compression machine. For a compressed pressure of 15 bar, the compressed temperatures have been varied in the range of 725-855 K for all the stoichiometric fuel/oxidizer mixtures. Over the conditions investigated in this study, the ignition delay decreases monotonically as temperature increases and exhibits single-stage characteristics. Experimental ignition delays are also compared to simulations computed using three kinetic mechanisms available in the literature. Reasonable agreement is found for three isomers (tert-, iso-, and n-butanol).
Autoignition experiments for n-butanol have been performed using a heated rapid compression machine at compressed pressures of 15 and 30 bar, in the compressed temperature range of 675-925 K, and for equivalence ratios of 0.5, 1.0, and 2.0. Over the conditions studied, the ignition delay decreases monotonically as temperature increases, and the autoignition response exhibits single-stage characteristics. A non-linear fit to the experimental data is performed and the reactivity, in terms of the inverse of ignition delay, shows nearly second order dependence on the initial oxygen mole fraction and slightly greater than first order dependence on initial fuel mole fraction and compressed pressure. Experimentally measured ignition delays are also compared to simulations using several reaction mechanisms available in the literature. Agreement between simulated and experimental ignition delay is found to be unsatisfactory. Sensitivity analysis is performed on one recent mechanism and indicates that uncertainties in the rate coefficients of parent fuel decomposition reactions play a major role in causing the poor agreement. Path analysis of the fuel decomposition reactions supports this conclusion and also highlights the particular importance of certain pathways. Further experimental investigations of the fuel decomposition, including speciation measurements, are required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا