ﻻ يوجد ملخص باللغة العربية
We report the analysis of a uniform sample of 31 light curves of the nova-like variable UU Aqr with eclipse mapping techniques. The data were combined to derive eclipse maps of the average steady-light component, the long-term brightness changes, and low- and high-frequency flickering components. The long-term variability responsible for the low and high brightness states is explained in terms of the response of a viscous disk to changes of 20-50 per cent in the mass transfer rate from the donor star. Low- and high-frequency flickering maps are dominated by emission from two asymmetric arcs reminiscent of those seen in the outbursting dwarf nova IP Peg, and are similarly interpreted as manifestation of a tidally-induced spiral shock wave in the outer regions of a large accretion disk. The asymmetric arcs are also seen in the map of the steady-light aside of the broad brightness distribution of a roughly steady-state disk. The arcs account for 25 per cent of the steady-light flux and are a long-lasting feature in the accretion disk of UU Aqr. We infer an opening angle of 10+/-3 degrees for the spiral arcs. The results suggest that the flickering in UU Aqr is caused by turbulence generated after the collision of disk gas with the density-enhanced spiral wave in the accretion disk.
We report a time-lapse eclipse mapping analysis of B-band time-series of the nova-like variable UU Aqr along a typical stunted outburst in 2002 August. Disc asymmetries rotating in the prograde sense in the eclipse maps are interpreted as a precessin
The morphology and optical spectrum of IPHASXJ210205+471015, a nebula classified as a possible planetary nebula, are however strikingly similar to those of ATCnc, a classical nova shell around a dwarf nova. To investigate its true nature, we have obt
We obtained photometric observations of the nova-like cataclysmic variable RW Tri and gathered all available AAVSO and other data from the literature. We determined the system parameters and found their uncertainties using the code developed by us to
We present the first dynamical determination of the binary parameters of an eclipsing SW Sextantis star in the 3-4 hour orbital period range during a low state. We obtained time-resolved optical spectroscopy and photometry of HS 0220+0603 during its