ﻻ يوجد ملخص باللغة العربية
In this paper we study the use of cross-correlations between multiple gravitational wave (GW) data streams for detecting long-lived periodic signals. Cross-correlation searches between data from multiple detectors have traditionally been used to search for stochastic GW signals, but recently they have also been used in directed searches for periodic GWs. Here we further adapt the cross-correlation statistic for periodic GW searches by taking into account both the non-stationarity and the long term-phase coherence of the signal. We study the statistical properties and sensitivity of this search, its relation to existing periodic wave searches, and describe the precise way in which the cross-correlation statistic interpolates between semi-coherent and fully-coherent methods. Depending on the maximum duration over we wish to preserve phase coherence, the cross-correlation statistic can be tuned to go from a standard cross-correlation statistic using data from distinct detectors, to the semi-coherent time-frequency methods with increasing coherent time baselines, and all the way to a full coherent search. This leads to a unified framework for studying periodic wave searches and can be used to make informed trade-offs between computational cost, sensitivity, and robustness against signal uncertainties.
The cross-correlation search has been previously applied to map the gravitational wave (GW) stochastic background in the sky and also to target GW from rotating neutron stars/pulsars. Here we investigate how the cross-correlation method can be used t
We consider the cross-correlation search for periodic GWs and its potential application to the LMXB Sco X-1. This method coherently combines data from different detectors at the same time, as well as different times from the same or different detecto
We describe the application of the lattice covering problem to the placement of templates in a search for continuous gravitational waves from the low-mass X-Ray binary Scorpius X-1. Efficient placement of templates to cover the parameter space at a g
We report on an all-sky search for periodic gravitational waves in the frequency band 20-475 Hz and with a frequency time derivative in the range of [-1.0, +0.1]e-8 Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmet
We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1000 Hz and with the frequencys time derivative in the range -1.0E-8 Hz/s to zero. Data from the fourth LIGO science run (S4) have been