ﻻ يوجد ملخص باللغة العربية
Let G be a simple graph and let J be its ideal of vertex covers. We give a graph theoretical description of the irreducible b-vertex covers of G, i.e., we describe the minimal generators of the symbolic Rees algebra of J. Then we study the irreducible b-vertex covers of the blocker of G, i.e., we study the minimal generators of the symbolic Rees algebra of the edge ideal of G. We give a graph theoretical description of the irreducible binary b-vertex covers of the blocker of G. It is shown that they correspond to irreducible induced subgraphs of G. As a byproduct we obtain a method, using Hilbert bases, to obtain all irreducible induced subgraphs of G. In particular we obtain all odd holes and antiholes. We study irreducible graphs and give a method to construct irreducible b-vertex covers of the blocker of G with high degree relative to the number of vertices of G.
In this thesis we are interested in studying algebraic properties of monomial algebras, that can be linked to combinatorial structures, such as graphs and clutters, and to optimization problems. A goal here is to establish bridges between commutative
Let $G$ be a simple graph on $n$ vertices and $J_G$ denote the binomial edge ideal of $G$ in the polynomial ring $S = mathbb{K}[x_1, ldots, x_n, y_1, ldots, y_n].$ In this article, we compute the second graded Betti numbers of $J_G$, and we obtain a
We establish basic properties of a sheaf of graded algebras canonically associated to every relative affine scheme $f : X rightarrow S$ endowed with an action of the additive group scheme $mathbb{G}_{ a,S}$ over a base scheme or algebraic space $S$,
Let $R$ be the face ring of a simplicial complex of dimension $d-1$ and ${mathcal R}(mathfrak{n})$ be the Rees algebra of the maximal homogeneous ideal $mathfrak{n}$ of $R.$ We show that the generalized Hilbert-Kunz function $HK(s)=ell({mathcal R}(ma
Building on coprincipal mesoprimary decomposition [Kahle and Miller, 2014], we combinatorially construct an irreducible decomposition of any given binomial ideal. In a parallel manner, for congruences in commutative monoids we construct decomposition