ﻻ يوجد ملخص باللغة العربية
CD8 T cells are specialized immune cells that play an important role in the regulation of antiviral immune response and the generation of protective immunity. In this paper we investigate the differentiation of memory CD8 T cells in the immune response using a short time course microarray experiment. Structurally, this experiment is similar to many in that it involves measurements taken on independent samples, in one biological group, at a small number of irregularly spaced time points, and exhibiting patterns of temporal nonstationarity. To analyze this CD8 T-cell experiment, we develop a hierarchical state space model so that we can: (1) detect temporally differentially expressed genes, (2) identify the direction of successive changes over time, and (3) assess the magnitude of successive changes over time. We incorporate hidden Markov models into our model to utilize the information embedded in the time series and set up the proposed hierarchical state space model in an empirical Bayes framework to utilize the population information from the large-scale data. Analysis of the CD8 T-cell experiment using the proposed model results in biologically meaningful findings. Temporal patterns involved in the differentiation of memory CD8 T cells are summarized separately and performance of the proposed model is illustrated in a simulation study.
Motivation: Time course data obtained from biological samples subject to specific treatments can be very useful for revealing complex and novel biological phenomena. Although an increasing number of time course microarray datasets becomes available,
Complete understanding of the mechanisms regulating the proliferation and differentiation that takes place during human immune CD8+ T cell responses is still lacking. Human clinical data is usually limited to blood cell counts, yet the initiation of
Ethane is the most abundant non-methane hydrocarbon in the Earths atmosphere and an important precursor of tropospheric ozone through various chemical pathways. Ethane is also an indirect greenhouse gas (global warming potential), influencing the atm
We introduce and analyze several aspects of a new model for cell differentiation. It assumes that differentiation of progenitor cells is a continuous process. From the mathematical point of view, it is based on partial differential equations of trans
Predicting equipment failure is important because it could improve availability and cut down the operating budget. Previous literature has attempted to model failure rate with bathtub-formed function, Weibull distribution, Bayesian network, or AHP. B