ترغب بنشر مسار تعليمي؟ اضغط هنا

Photometric Properties and Scaling Relations of Early Type Brightest Cluster Galaxies

131   0   0.0 ( 0 )
 نشر من قبل Fengshan Liu
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the photometric properties of the early type Brightest Cluster Galaxies (BCGs) using a carefully selected sample of 85 BCGs from the C4 cluster catalogue with redshift less than 0.1. We perform accurate background subtractions, and surface photometry for these BCGs to 25 $magsec$ in the Sloan $r$-band. By quantitatively analysing the gradient of the Petrosian profiles of BCGs, we find that a large fraction of BCGs have extended stellar envelopes in their outskirts; more luminous BCGs tend to have more extended stellar halos that are likely connected with mergers. A comparison sample of elliptical galaxies was chosen with similar apparent magnitude and redshift ranges, for which the same photometric analysis procedure is applied. We find that BCGs have steeper size-luminosity ($R propto L^alpha$) and Faber-Jackson ($L propto sigma^beta$) relations than the bulk of early type galaxies. Furthermore, the power-law indices ($alpha$ and $beta$) in these relations increase as the isophotal limits become deeper. For isophotal limits from 22 to 25 $magsec$, BCGs are usually larger than the bulk of early type galaxies, and a large fraction ($sim 49%$) of BCGs have disky isophotal shapes. The differences in the scaling relations are consistent with a scenario where the dynamical structure and formation route of BCGs may be different from the bulk of early type galaxies, in particular dry (dissipationless) mergers may play a more important role in their formation; we highlight several possible dry merger candidates in our sample.



قيم البحث

اقرأ أيضاً

X-ray luminosity, temperature, gas mass, total mass, and their scaling relations are derived for 94 early-type galaxies using archival $Chandra$ X-ray Observatory observations. Consistent with earlier studies, the scaling relations, $L_X propto T^{4. 5pm0.2}$, $M propto T^{2.4pm0.2}$, and $L_X propto M^{2.8pm0.3}$, are significantly steeper than expected from self similarity. This steepening indicates that their atmospheres are heated above the level expected from gravitational infall alone. Energetic feedback from nuclear black holes and supernova explosions are likely heating agents. The tight $L_X - T$ correlation for low-luminosities systems (i.e., below 10$^{40}$ erg/s) are at variance with hydrodynamical simulations which generally predict higher temperatures for low luminosity galaxies. We also investigate the relationship between total mass and pressure, $Y_X = M_g times T$, finding $M propto Y_{X}^{0.45pm0.04}$. We explore the gas mass to total mass fraction in early-type galaxies and find a range of $0.1-1.0%$. We find no correlation between the gas-to-total mass fraction with temperature or total mass. Higher stellar velocity dispersions and higher metallicities are found in hotter, brighter, and more massive atmospheres. X-ray core radii derived from $beta$-model fitting are used to characterize the degree of core and cuspiness of hot atmospheres.
I review our understanding of classic dynamical scaling relations, relating luminosity, size and kinematics of early-type galaxies. Using unbiased determinations of galaxy mass profiles from stellar dynamical models, a simple picture has emerged in w hich scaling relations are driven by virial equilibrium, accompanied by a trend in the stellar mass-to-light ratio (M/L). This picture confirms the earliest insights. The trend is mainly due to the combined variation of age, metallicity and the stellar initial mass function (IMF). The systematic variations best correlate with the galaxy velocity dispersion, which traces the bulge mass fraction. This indicates a link between bulge growth and quenching of star formation. Dark matter is unimportant within the half-light radius, where the total mass profile is close to isothermal ($rhopropto r^{-2}$).
204 - J. B. Hyde , M. Bernardi 2009
We select a sample of about 50,000 early-type galaxies from the Sloan Digital Sky Survey (SDSS), calibrate fitting formulae which correct for known problems with photometric reductions of extended objects, apply these corrections, and then measure a number of pairwise scaling relations in the corrected sample. We show that, because they are not seeing corrected, the use of Petrosian-based quantities in magnitude limited surveys leads to biases, and suggest that this is one reason why Petrosian-based analyses of BCGs have failed to find significant differences from the bulk of the early-type population. These biases are not present when seeing-corrected parameters derived from deVaucouleur fits are used. Most of the scaling relations we study show evidence for curvature: the most luminous galaxies have smaller velocity dispersions, larger sizes, and fainter surface brightnesses than expected if there were no curva-ture. These statements remain true if we replace luminosities with stellar masses; they suggest that dissipation is less important at the massive end. There is curvature in the dynamical to stellar mass relation as well: the ratio of dynamical to stellar mass increases as stellar mass increases, but it curves upwards from this scaling both at small and large stellar masses. In all cases, the curvature at low masses becomes apparent when the sample becomes dominated by objects with stellar masses smaller than 3 x 10^10 M_Sun. We quantify all these trends using second order polynomials; these generally provide significantly better description of the data than linear fits, except at the least luminous end.
185 - F. S. Liu 2009
We search for ongoing major dry-mergers in a well selected sample of local Brightest Cluster Galaxies (BCGs) from the C4 cluster catalogue. 18 out of 515 early-type BCGs with redshift between 0.03 and 0.12 are found to be in major dry-mergers, which are selected as pairs (or triples) with $r$-band magnitude difference $dm<1.5$ and projected separation $rp<30$ kpc, and showing signatures of interaction in the form of significant asymmetry in residual images. We find that the fraction of BCGs in major dry-mergers increases with the richness of the clusters, consistent with the fact that richer clusters usually have more massive (or luminous) BCGs. We estimate that present-day early-type BCGs may have experienced on average $sim 0.6 (tmerge/0.3Gyr)^{-1}$ major dry-mergers and through this process increases their luminosity (mass) by $15% (tmerge/0.3Gyr)^{-1} (fmass/0.5)$ on average since $z=0.7$, where $tmerge$ is the merging timescale and $fmass$ is the mean mass fraction of companion galaxies added to the central ones. We also find that major dry-mergers do not seem to elevate radio activities in BCGs. Our study shows that major dry-mergers involving BCGs in clusters of galaxies are not rare in the local Universe, and they are an important channel for the formation and evolution of BCGs.
145 - F. S. Liu , Shude Mao (2 2012
We identify a total of 120 early-type Brightest Cluster Galaxies (BCGs) at 0.1<z<0.4 in two recent large cluster catalogues selected from the Sloan Digital Sky Survey (SDSS). They are selected with strong emission lines in their optical spectra, with both H{alpha} and [O II]{lambda}3727 line emission, which indicates significant ongoing star formation. They constitute about ~ 0.5% of the largest, optically-selected, low-redshift BCG sample, and the fraction is a strong function of cluster richness. Their star formation history can be well described by a recent minor and short starburst superimposed on an old stellar component, with the recent episode of star formation contributing on average only less than 1 percent of the total stellar mass. We show that the more massive star-forming BCGs in richer clusters tend to have higher star formation rate (SFR) and specific SFR (SFR per unit galaxy stellar mass). We also compare their statistical properties with a control sample selected from X-ray luminous clusters, and show that the fraction of star-forming BCGs in X-ray luminous clusters is almost one order of magnitude larger than that in optically-selected clusters. BCGs with star formation in cooling flow clusters usually have very flat optical spectra and show the most active star formation, which may be connected with cooling flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا