ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure-induced phase transitions in the multiferroic perovskite BiFeO3 studied by far-infrared micro-spectroscopy

235   0   0.0 ( 0 )
 نشر من قبل Alexej Pashkin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of pressure-dependent far-infrared reflectivity measurements on the multiferroic perovskite BiFeO3 at room temperature. The observed behavior of the infrared-active phonon modes as a funtion of pressure clearly reveals two structural phase transitions around 3.0 and 7.5 GPa, supporting the results of recent Raman and x-ray diffraction studies under pressure. Based on the pressure-dependent frequency shifts of the infrared-active phonon modes we discuss the possible character of the phase transitions.



قيم البحث

اقرأ أيضاً

A prominent band centered at around 1000-1300 cm-1 and associated with resonant enhancement of two-phonon Raman scattering is reported in multiferroic BiFeO3 thin films and single crystals. A strong anomaly in this band occurs at the antiferromagneti c Neel temperature. This band is composed of three peaks, assigned to 2A4, 2E8, and 2E9 Raman modes. While all three peaks were found to be sensitive to the antiferromagnetic phase transition, the 2E8 mode, in particular, nearly disappears at TN on heating, indicating a strong spin-two phonon coupling in BiFeO3.
The magnetic-field-dependent spin ordering of strained BiFeO3 films is determined using nuclear resonant scattering and Raman spectroscopy. The critical field required to destroy the cycloidal modulation of the Fe spins is found to be significantly l ower than in the bulk, with appealing implications for field-controlled spintronic and magnonic devices.
Three different film systems have been systematically investigated to understand the effects of strain and substrate constraint on the phase transitions of perovskite films. In SrTiO$_3$ films, the phase transition temperature T$_C$ was determined by monitoring the superlattice peaks associated with rotations of TiO$_6$ octahedra. It is found that T$_C$ depends on both SrTiO$_3$ film thickness and SrRuO$_3$ buffer layer thickness. However, lattice parameter measurements showed no sign of the phase transitions, indicating that the tetragonality of the SrTiO$_3$ unit cells was no longer a good order parameter. This signals a change in the nature of this phase transition, the internal degree of freedom is decoupled from the external degree of freedom. The phase transitions occur even without lattice relaxation through domain formation. In NdNiO$_3$ thin films, it is found that the in-plane lattice parameters were clamped by the substrate, while out-of-plane lattice constant varied to accommodate the volume change across the phase transition. This shows that substrate constraint is an important parameter for epitaxial film systems, and is responsible for the suppression of external structural change in SrTiO$_3$ and NdNiO$_3$ films. However, in SrRuO$_3$ films we observed domain formation at elevated temperature through x-ray reciprocal space mapping. This indicated that internal strain energy within films also played an important role, and may dominate in some film systems. The final strain states within epitaxial films were the result of competition between multiple mechanisms and may not be described by a single parameter.
AgClO4 has been studied under compression by x-ray diffraction and density functional theory calculations. Experimental evidence of a structural phase transition from the tetragonal structure of AgClO4 to an orthorhombic barite-type structure has bee n found at 5.1 GPa. The transition is supported by total-energy calculations. In addition, a second transition to a monoclinic structure is theoretically proposed to take place beyond 17 GPa. The equation of state of the different phases is reported as well as the calculated Raman-active phonons and their pressure evolution. Finally, we provide a description of all the structures of AgClO4 and discuss their relationships. The structures are also compared with those of AgCl in order to explain the structural sequence determined for AgClO4.
190 - G. A. Gehring 2008
A quantum critical point is approached by applying pressure in a number of magnetic metals. The observed dependence of Tc on pressure necessarily means that the magnetic energy is coupled to the lattice. A first order phase transition occurs if this coupling exceeds a critical value: this is inevitable if diverges as Tc approaches zero. It is argued that this is the cause of the first order transition that is observed in many systems. Using Landau theory we obtain expressions for the boundaries of the region where phase separation occurs that agree well with experiments done on MnSi and other materials. The theory can be used to obtain very approximate values for the temperature and pressure at the tricritical point in terms of quantities measured at ambient pressure and the measured values of along the second order line. The values of the tricritical temperature for various materials obtained from Landau theory are too low but it is shown that the predicted values will rise if the effects of fluctuations are included.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا