ترغب بنشر مسار تعليمي؟ اضغط هنا

On the white dwarf cooling sequence of the globular cluster Omega Centauri

128   0   0.0 ( 0 )
 نشر من قبل Annalisa Calamida
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present deep and precise photometry (F435, F625W, F658N) of Omega Cen collected with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). We have identified ~ 6,500 white dwarf (WD) candidates, and the ratio of WD and Main Sequence (MS) star counts is found to be at least a factor of two larger than the ratio of CO-core WD cooling and MS lifetimes. This discrepancy is not explained by the possible occurrence of a He-enhanced stellar population, since the MS lifetime changes by only 15% when changing from a canonical (Y=0.25) to a He-enhanced composition (Y=0.42). The presence of some He-core WDs seems able to explain the observed star counts. The fraction of He WDs required ranges from 10% to 80% depending on their mean mass and it is at least five times larger than for field WDs. The comparison in the Color Magnitude Diagram between theory and observations also supports the presence of He WDs. Empirical evidence indicates that He WDs have been detected in stellar systems hosting a large sample of extreme horizontal branch stars, thus suggesting that a fraction of red giants might avoid the He-core flash.



قيم البحث

اقرأ أيضاً

111 - A. Bellini 2013
We have applied our empirical-PSF-based photometric techniques on a large number of calibration-related WFC3/UVIS UV-B exposures of the core of {omega} Cen, and found a well-defined split in the right part of the white-dwarf cooling sequence (WDCS). The redder sequence is more populated by a factor of ~2. We can explain the separation of the two sequences and their number ratio in terms of the He-normal and He-rich subpopulations that had been previously identified along the cluster main sequence. The blue WDCS is populated by the evolved stars of the He-normal component (~0.55 Msun CO-core DA objects) while the red WDCS hosts the end-products of the He-rich population (~0.46 Msun objects, ~10% CO-core and ~90% He-core WDs). The He-core WDs correspond to He-rich stars that missed the central He-ignition, and we estimate their fraction by analyzing the population ratios along the cluster horizontal branch.
We present manganese abundances in 10 red-giant members of the globular cluster Omega Centauri; 8 stars are from the most metal-poor population (RGB MP and RGB MInt1) while two targets are members of the more metal rich groups (RGB MInt2 and MInt3). This is the first time Mn abundances have been studied in this peculiar stellar system. The LTE values of [Mn/Fe] in Omega Cen overlap those of Milky Way stars in the metal poor Omega Cen populations ([Fe/H] ~ -1.5 to -1.8), however unlike what is observed in Milky Way halo and disk stars, [Mn/Fe] declines in the two more metal-rich RGB MInt2 and MInt3 targets. Non-LTE calculations were carried out in order to derive corrections to the LTE Mn abundances. The non-LTE results for Omega Cen in comparison with the non-LTE [Mn/Fe] versus [Fe/H] trend obtained for the Milky Way confirm and strengthen the conclusion that the manganese behavior in Omega Cen is distinct. These results suggest that low-metallicity supernovae (with metallicities < -2) of either Type II or Type Ia dominated the enrichment of the more metal-rich stars in Omega Cen. The dominance of low-metallicity stars in the chemical evolution of Omega Cen has been noted previously in the s-process elements where enrichment from metal-poor AGB stars is indicated. In addition, copper, which also has metallicity dependent yields, exhibits lower values of [Cu/Fe] in the RGB MInt2 and MInt3 Omega Cen populations.
We present deep multiband (F435W, F625W, and F658N) photometric data of the Globular Cluster Omega Cen collected with the Advanced Camera for Surveys on board of the Hubble Space Telescope. We identified in the (F435W-F625W, F435W) plane more than tw o thousand White Dwarf (WD) candidates using three out of nine available pointings. Such a large sample appears in agreement with predictions based on the ratio between WD and Horizontal Branch (HB) evolutionary lifetimes. We also detected ~ 1600 WDs in the (F658N-F625W, F625W) plane, supporting the evidence that a large fraction of current cluster WDs are $H_alpha$ bright.
118 - L. R. Bedin 2005
In the old, populous, and metal-rich open cluster NGC 6791 we have used deep HST/ACS images to track the white dwarf cooling sequence down to m_F606W~28.5. The white dwarf luminosity function shows a well defined peak at m_F606W~27.4, and a bending t o the blue in the color--magnitude diagram. If this peak corresponds to the end of the white dwarf cooling sequence the comparison with theoretical isochrones provides a cluster age estimate of ~2.4 Gyr, in sharp contrast with the age of 8--9 Gyr inferred from the main-sequence turn-off. If the end is at fainter magnitudes, the peak at m_F606W~27.4 is even more enigmatic. We discuss possible causes, none of them very convincing.
82 - L. R. Bedin 2004
Recent, high precision photometry of Omega Centauri, the biggest Galactic globular cluster, has been obtained with Hubble Space Telescope. The color magnitude diagram reveals an unexpected bifurcation of colors in the main sequence (MS). The newly fo und double MS, the multiple turnoffs and subgiant branches, and other sequences discovered in the past along the red giant branch of this cluster add up to a fascinating but frustrating puzzle. Among the possible explanations for the blue main sequence an anomalous overabundance of helium is suggested. The hypothesis will be tested with a set of FLAMES@VLT data we have recently obtained (ESO DDT program), and with forthcoming ACS@HST images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا