ترغب بنشر مسار تعليمي؟ اضغط هنا

Product formulas for the cyclotomic v-Schur algebra and for the canonical bases of the Fock space

147   0   0.0 ( 0 )
 نشر من قبل Toshiaki Shoji
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In our earlier work, we have proved a product formula for certain decomposition numbers of the cyclotomic v-Schur algebra associated to the Ariki-Koike algebra. It is conjectured by Yvonne that the decomposition numbers of this algebra can be described in terms of the canonical basis of the higher level Fock space studied by Uglov. In this paper we prove a product formula related to the canonical basis of the Fock space. In view of Yvonnes conjecture, this formula is regarded as a counter-part for the Fock space of our previous formula.



قيم البحث

اقرأ أيضاً

Let $S$ be the cyclotomic $q$-Schur algebra associated to the Ariki-Koike algebra $H_{n,r}$ of rank $n$, introduced by Dipper-James-Mathas. For each $p = (r_1, ..., r_g)$ such that $r_1 + ... + r_g = r$, we define a subalgebra $S^p$ of $S$ and its qu otient algebra $bar S^p$. It is shown that $S^p$ is a standardly based algebra and $bar S^p$ is a cellular algebra. By making use of these algebras, we show that certain decomposition numbers for $S$ can be expressed as a product of decomposition numbers for cyclotomic $q$-Schur algebras associated to smaller Ariki_koike algebras $H_{n_k,r_k}$.
172 - Jie Xiao , Han Xu , Minghui Zhao 2021
For quantum group of affine type, Lusztig gave an explicit construction of the affine canonical basis by simple perverse sheaves. In this paper, we construct a bar-invariant basis by using a PBW basis arising from representations of the corresponding tame quiver. We prove that this bar-invariant basis coincides with Lusztigs canonical basis and obtain a concrete bijection between the elements in theses two bases. The index set of these bases is listed orderly by modules in preprojective, regular non-homogeneous, preinjective components and irreducible characters of symmetric groups. Our results are based on the work of Lin-Xiao-Zhang and closely related with the work of Beck-Nakajima. A crucial method in our construction is a generalization of that by Deng-Du-Xiao.
80 - Stewart Wilcox , Shona Yu 2006
The cyclotomic Birman-Murakami-Wenzl (or BMW) algebras B_n^k, introduced by R. Haring-Oldenburg, are extensions of the cyclotomic Hecke algebras of Ariki-Koike, in the same way as the BMW algebras are extensions of the Hecke algebras of type A. In th is paper we focus on the case n=2, producing a basis of B_2^k and constructing its left regular representation.
163 - Kentaro Wada 2007
Let $Sc(vL)$ be the cyclotomic $q$-Schur algebra associated to the Ariki-Koike algebra $He_{n,r}$, introduced by Dipper-James-Mathas. In this paper, we consider $v$-decomposition numbers of $Sc(vL)$, namely decomposition numbers with respect to the J antzen filtrations of Weyl modules. We prove, as a $v$-analogue of the result obtained by Shoji-Wada, a product formula for $v$-decomposition numbers of $Sc(vL)$, which asserts that certain $v$-decomposition numbers are expressed as a product of $v$-decomposition numbers for various cyclotomic $q$-Schur algebras associated to Ariki-koike algebras $He_{n_i,r_i}$ of smaller rank. Moreover we prove a similar formula for $v$-decomposition numbers of $He_{n,r}$ by using a Schur functor.
159 - Ryosuke Kodera 2015
The localized equivariant homology of the quiver variety of type $A_{N-1}^{(1)}$ can be identified with the level one Fock space by assigning a normalized torus fixed point basis to certain symmetric functions, Jack($mathfrak{gl}_N$) symmetric functi ons introduced by Uglov. We show that this correspondence is compatible with actions of two algebras, the Yangian for $mathfrak{sl}_N$ and the affine Lie algebra $hat{mathfrak{sl}}_N$, on both sides. Consequently we obtain affine Yangian action on the Fock space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا