ﻻ يوجد ملخص باللغة العربية
We compute the couplings of the zero modes and first excited states of gluons, $W$s, $Z$ gauge bosons, as well as the Higgs, to the zero modes and first excited states of the third generation quarks, in an RS Gauge-Higgs unification scenario based on a bulk $SO(5)times U(1)_X$ gauge symmetry, with gauge and fermion fields propagating in the bulk. Using the parameter space consistent with electroweak precision tests and radiative electroweak symmetry breaking, we study numerically the dependence of these couplings on the parameters of our model. Furthermore, after emphasizing the presence of light excited states of the top quark, which couple strongly to the Kaluza Klein gauge bosons, the associated collider phenomenology is analyzed. In particular, we concentrate on the possible detection of the first excited state of the top, $t^1$, which tends to have a higher mass than the ones accessible via regular QCD production processes. We stress that the detection of these particles is still possible due to an increase in the pair production of $t^1$ induced by the first excited state of the gluon, $G^1$.
We propose gauge-Higgs unification in fuzzy extra dimensions as a possible solution to the Higgs naturalness problem. In our approach, the fuzzy extra dimensions are created spontaneously as a vacuum solution of certain four-dimensional gauge theory.
We perform a detailed investigation of a Grand Unified Theory (GUT)-inspired theory of gauge-Higgs unification. Scanning the models parameter space with adapted numerical techniques, we contrast the scenarios low energy limit with existing SM and col
We study a warped extra-dimension scenario where the Standard Model fields lie in the bulk, with the addition of a fourth family of fermions. We concentrate on the flavor structure of the Higgs couplings with fermions in the flavor anarchy ansatz. Ev
In the dynamical gauge-Higgs unification of electroweak interactions in the Randall-Sundrum warped spacetime the Higgs boson mass is predicted in the range 120 GeV -- 290 GeV, provided that the spacetime structure is determined at the Planck scale. C
In the context of a warped extra-dimension with Standard Model fields in the bulk, we obtain the general flavor structure of the Higgs couplings to fermions. These couplings will be generically misaligned with respect to the fermion mass matrix, prod