ﻻ يوجد ملخص باللغة العربية
The entropy change of a (non-equilibrium) Markovian ensemble is calculated from (1) the ensemble phase density $p(t)$ evolved as iterative map, $p(t) = mathbb{M}(t) p(t- Delta t)$ under detail balanced transition matrix $mathbb{M}(t)$, and (2) the invariant phase density $pi(t) = mathbb{M}(t)^{infty} pi(t) $. A virtual measurement protocol is employed, where variational entropy is zero, generating exact expressions for irreversible entropy change in terms of the Jeffreys measure, $mathcal{J}(t) = sum_{Gamma} [p(t) - pi(t)] ln bfrac{p(t)}{pi(t)}$, and for reversible entropy change in terms of the Kullbach-Leibler measure, $mathcal{D}_{KL}(t) = sum_{Gamma} pi(0) ln bfrac{pi(0)}{pi(t)}$. Five properties of $mathcal{J}$ are discussed, and Clausius theorem is derived.
We study the nonextensive thermodynamics for open systems. On the basis of the maximum entropy principle, the dual power-law q-distribution functions are re-deduced by using the dual particle number definitions and assuming that the chemical potentia
We formulate a new ``Wigner characteristics based method to calculate entanglement entropies of subsystems of Fermions using Keldysh field theory. This bypasses the requirements of working with complicated manifolds for calculating R{e}nyi entropies
We study thermalization in open quantum systems using the Lindblad formalism. A method that both thermalizes and couples to Lindblad operators only at edges of the system is introduced. Our method leads to a Gibbs state of the system, satisfies fluct
We demonstrate the accurate calculation of entropies and free energies for a variety of liquid metals using an extension of the two phase thermodynamic (2PT) model based on a decomposition of the velocity autocorrelation function into gas-like (hard
We illustrate the Jarzynski equality on the exactly solvable model of a one-dimensional ideal gas in uniform expansion or compression. The analytical results for the probability density $P(W)$ of the work $W$ performed by the gas are compared with th