ﻻ يوجد ملخص باللغة العربية
We discuss a self-consistent method to calculate the properties of cold asymmetric nuclear matter which is dressed with isoscalar scalar pion condensates. The nucleon-nucleon interaction is mediated by these pion pairs, omega- and rho- mesons. The parameters of these interactions are evaluated self-consistently using the saturation properties of nuclear matter like binding energy, pressure, compressibility and symmetry energy. The computed equation of state of pure neutron matter (PNM) is used to calculate mass and radius of a pure neutron star.
The existence of phase transitions from liquid to gas phases in asymmetric nuclear matter (ANM) is related with the instability regions which are limited by the spinodals. In this work we investigate the instabilities in ANM described within relativi
We consider the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state with an angle dependent-gap (ADG) for the arbitrary angle theta_0 between the direction of the Cooper pair momentum and the symmetry axis of the ADG in asymmetric nuclear matter. We find t
We explore the appearance of light clusters at high densities of collapsing stellar cores. Special attention is paid to the unstable isotope H4, which was not included in previous studies. The importance of light clusters in the calculation of rates
Nucleon momentum distributions at various densities and isospin-asymmetries for nuclear matter are investigated systematically within the extended Bruecker-Hartree-Fock approach.The shapes of the normalized momentum distributions varying with $k/k_{F
We propose an axisymmetric angle-dependent gap (ADG) state with the broken rotational symmetry in isospin-asymmetric nuclear matter. In this state, the deformed Fermi spheres of neutrons and protons increase the pairing probabilities along the axis o