ﻻ يوجد ملخص باللغة العربية
A full description of the 5.5-yr low excitation events in Eta Carinae is presented. We show that they are not as simple and brief as previously thought, but a combination of two components. The first, the slow variation component, is revealed by slow changes in the ionization level of circumstellar matter across the whole cycle and is caused by gradual changes in the wind-wind collision shock-cone orientation, angular opening and gaseous content. The second, the collapse component, is restricted to around the minimum, and is due to a temporary global collapse of the wind-wind collision shock. High energy photons (E > 16 eV) from the companion star are strongly shielded, leaving the Weigelt objects at low ionization state for >6 months. High energy phenomena are sensitive only to the collapse, low energy only to the slow variation and intermediate energies to both components. Simple eclipses and mechanisms effective only near periastron (e.g., shell ejection or accretion onto the secondary star) cannot account for the whole 5.5-yr cycle. We find anti-correlated changes in the intensity and the radial velocity of P Cygni absorption profiles in FeII 6455 and HeI 7065 lines, indicating that the former is associated to the primary and the latter to the secondary star. We present a set of light curves representative of the whole spectrum, useful for monitoring the next event (2009 January 11).
Extensive spectral observations of eta Carinae over the last cycle, and particularly around the 2003.5 low excitation event, have been obtained. The variability of both narrow and broad lines, when combined with data taken from two earlier cycles, re
During the years 1838-1858, the very massive star {eta} Carinae became the prototype supernova impostor: it released nearly as much light as a supernova explosion and shed an impressive amount of mass, but survived as a star.1 Based on a light-echo s
Eta Carinae was observed by FUSE through the LWRS (30 arcsec x30 arcsec) and HIRS (1.25 arcsec x 20 arcsec) apertures in March and April 2004. There are significant differences between the two spectra. About half of the LWRS flux appears to be due to
The nebula around eta Carinae consists of two distinct parts: the Homunculus and the outer ejecta. The outer ejecta are mainly a collection of numerous filaments, shaped irregularly and distributed over an area of 1arcminx1arcmin. While the Homunculu
eta Carinae is a stellar binary system with a period of 5.54 years. It harbors one of the brightest and most massive stars in our galaxy. This paper presents spectroscopic evidence for a fast (up to 2,000 km/s) X-ray outflow of ionized gas launched f