ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of ultra-compact nuclear rings in three spiral galaxies

102   0   0.0 ( 0 )
 نشر من قبل S\\'ebastien Comer\\'on
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ring-shaped morphologies of nuclear star-forming regions within the central 40-200 pc of disk galaxies have been barely resolved so far in three composite Sy2 nuclei, the Sy2 Circinus galaxy and in three non-AGN galaxies. Such morphologies resemble those of the standard 1 kpc-size nuclear rings that lie in the inner Lindblad resonance regions of disk galaxies and, if they have a similar origin, represent recent radial gas inflows tantalisingly close to the central supermassive black holes. We aim to identify the population of such ultra-compact nuclear rings (UCNRs) and study their properties in relation to those of the host galaxies. From archival Hubble Space Telescope UV and Halpha images and from dust structure maps of the circumnuclear regions in nearby galaxies, we analyse the morphology of the star formation and dust, specifically searching for ring structures on the smallest observable scales. In a sample of 38 galaxies studied, we have detected a total of four new UCNRs, 30-130 pc in radius, in three different galaxies. Including our confirmation of a previous UCNR detection, this yields a UCNR fraction of roughly 10%, although our sample is neither complete nor unbiased. For the first time we resolve UCNRs in two LINERs. Overall the UCNR phenomenon appears widespread and limited neither to late-type galaxies nor exclusively to AGN hosts.



قيم البحث

اقرأ أيضاً

We present near-infrared (H- and K-band) SINFONI integral-field observations of the circumnuclear star formation rings in five nearby spiral galaxies. We made use of the relative intensities of different emission lines (i.e. [FeII], HeI, Brg) to age date the stellar clusters present along the rings. This qualitative, yet robust, method allows us to discriminate between two distinct scenarios that describe how star formation progresses along the rings. Our findings favour a model where star formation is triggered predominantly at the intersection between the bar major axis and the inner Lindblad resonance and then passively evolves as the clusters rotate around the ring (Pearls on a string scenario), although models of stochastically distributed star formation (Popcorn model) cannot be completely ruled out.
We have discovered nine ultra-compact dwarf galaxies (UCDs) in the Virgo Cluster, extending samples of these objects outside the Fornax Cluster. Using the 2dF multi-fiber spectrograph on the Anglo-Australian Telescope, the new Virgo members were foun d among 1500 color-selected, star-like targets with 16.0 < b_j < 20.2 in a two-degree diameter field centered on M87 (NGC4486). The newly-found UCDs are comparable to the UCDs in the Fornax Cluster, with sizes <~ 100 pc, -12.9 < M_B < -10.7, and exhibiting red, absorption-line spectra, indicative of an older stellar population. The properties of these objects remain consistent with the tidal threshing model for the origin of UCDs from the surviving nuclei of nucleated dwarf ellipticals disrupted in the cluster core, but can also be explained as objects that were formed by mergers of star clusters created in galaxy interactions. The discovery that UCDs exist in Virgo shows that this galaxy type is probably a ubiquitous phenomenon in clusters of galaxies; coupled with their possible origin by tidal threshing, the UCD population is a potential indicator and probe of the formation history of a given cluster. We also describe one additional bright UCD with M_B = -12.0 in the core of the Fornax Cluster. We find no further UCDs in our Fornax Cluster Spectroscopic Survey down to b_j = 19.5 in two additional 2dF fields extending as far as 3 degrees from the center of the cluster. All six Fornax bright UCDs identified with 2dF lie within 0.5 degree (projected distance of 170 kpc) of the central elliptical galaxy NGC1399.
Nuclear rings in barred galaxies are sites of active star formation. We use hydrodynamic simulations to study temporal and spatial behavior of star formation occurring in nuclear rings of barred galaxies where radial gas inflows are triggered solely by a bar potential. The star formation recipes include a density threshold, an efficiency, conversion of gas to star particles, and delayed momentum feedback via supernova explosions. We find that star formation rate (SFR) in a nuclear ring is roughly equal to the mass inflow rate to the ring, while it has a weak dependence on the total gas mass in the ring. The SFR typically exhibits a strong primary burst followed by weak secondary bursts before declining to very small values. The primary burst is associated with the rapid gas infall to the ring due to the bar growth, while the secondary bursts are caused by re-infall of the ejected gas from the primary burst. While star formation in observed rings persists episodically over a few Gyr, the duration of active star formation in our models lasts for only about a half of the bar growth time, suggesting that the bar potential alone is unlikely responsible for gas supply to the rings. When the SFR is low, most star formation occurs at the contact points between the ring and the dust lanes, leading to an azimuthal age gradient of young star clusters. When the SFR is large, on the other hand, star formation is randomly distributed over the whole circumference of the ring, resulting in no apparent azimuthal age gradient. Since the ring shrinks in size with time, star clusters also exhibit a radial age gradient, with younger clusters found closer to the ring. The cluster mass function is well described by a power law, with a slope depending on the SFR. Giant gas clouds in the rings have supersonic internal velocity dispersions and are gravitationally bound.
167 - Zhi Li , Juntai Shen 2015
Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of $x_2$ orbits. All roundish nuclear rings in our simulations settle in the range of $x_2$ orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the $x_2$ orbital family, i.e. round nuclear rings are allowed only in the radial range of $x_2$ orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter $f_{rm ring}$ measured from the rotation curve. The gravitational torque on gas in high pattern speed models is larger, leading to a smaller ring size than in the low pattern speed models. Our result may have important implications for using nuclear rings to measure the parameters of real barred galaxies with 2D gas kinematics.
We propose a new theory to explain the formation of spiral arms and of all types of outer rings in barred galaxies. We have extended and applied the technique used in celestial mechanics to compute transfer orbits. Thus, our theory is based on the ch aotic orbital motion driven by the invariant manifolds associated to the periodic orbits around the hyperbolic equilibrium points. In particular, spiral arms and outer rings are related to the presence of heteroclinic or homoclinic orbits. Thus, R1 rings are associated to the presence of heteroclinic orbits, while R1R2 rings are associated to the presence of homoclinic orbits. Spiral arms and R2 rings, however, appear when there exist neither heteroclinic nor homoclinic orbits. We examine the parameter space of three realistic, yet simple, barred galaxy models and discuss the formation of the different morphologies according to the properties of the galaxy model. The different morphologies arise from differences in the dynamical parameters of the galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا