ترغب بنشر مسار تعليمي؟ اضغط هنا

Peakons and Cauchy Biorthogonal Polynomials

129   0   0.0 ( 0 )
 نشر من قبل Marco Bertola
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The contents of the paper is now covered in two separate papers arXiv:0904.2188 and arXiv:0904.2602. Please refer to those. Note that you can still access the original version arXiv:0711.4082v1.



قيم البحث

اقرأ أيضاً

We consider the Cauchy problem for the Burgers hierarchy with general time dependent coefficients. The closed form for the Greens function of the corresponding linear equation of arbitrary order $N$ is shown to be a sum of generalised hypergeometric functions. For suitably damped initial conditions we plot the time dependence of the Cauchy problem over a range of $N$ values. For $N=1$, we introduce a spatial forcing term. Using connections between the associated second order linear Schr{o}dinger and Fokker-Planck equations, we give closed form expressions for the corresponding Greens functions of the sinked Bessel process with constant drift. We then apply the Greens function to give time dependent profiles for the corresponding forced Burgers Cauchy problem.
The Riemann-Hilbert problems for multiple orthogonal polynomials of types I and II are used to derive string equations associated to pairs of Lax-Orlov operators. A method for determining the quasiclassical limit of string equations in the phase spac e of the Whitham hierarchy of dispersionless integrable systems is provided. Applications to the analysis of the large-n limit of multiple orthogonal polynomials and their associated random matrix ensembles and models of non-intersecting Brownian motions are given.
157 - Andrei K. Svinin 2013
We introduce two classes of discrete polynomials and construct discrete equations admitting a Lax representation in terms of these polynomials. Also we give an approach which allows to construct lattice integrable hierarchies in its explicit form and show some examples.
156 - Jakub Lis 2011
In this paper we investigate the Q-ball Ansatz in the baby Skyrme model. First, the appearance of peakons, i.e. solutions with extremely large absolute values of the second derivative at maxima, is analyzed. It is argued that such solutions are intri nsic to the baby Skyrme model and do not depend on the detailed form of a potential used in calculations. Next, we concentrate on compact non spinning Q-balls. We show the failure of a small parameter expansion in this case. Finally, we explore the existence and parameter dependence of Q-ball solutions.
180 - Zhiwu Lin , Yue Liu 2007
The Degasperis-Procesi equation can be derived as a member of a one-parameter family of asymptotic shallow water approximations to the Euler equations with the same asymptotic accuracy as that of the Camassa-Holm equation. In this paper, we study the orbital stability problem of the peaked solitons to the Degasperis-Procesi equation on the line. By constructing a Liapunov function, we prove that the shapes of these peakon solitons are stable under small perturbations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا