ترغب بنشر مسار تعليمي؟ اضغط هنا

Hitchins Connection in Half-Form Quantization

176   0   0.0 ( 0 )
 نشر من قبل Niels Leth Gammelgaard
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a differential geometric construction of a connection in the bundle of quantum Hilbert spaces arising from half-form corrected geometric quantization of a prequantizable, symplectic manifold, endowed with a rigid, family of Kahler structures, all of which give vanishing first Dolbeault cohomology groups. In [And1] Andersen gave an explicit construction of Hitchins connection in the non-corrected case using additional assumptions. Under the same assumptions we also give an explicit solution in terms of Ricci potentials. Morover we show that if these are carefully chosen the construction coincides with the construction of Andersen in the non-corrected case.



قيم البحث

اقرأ أيضاً

In this paper, we will provide a review of the geometric construction, proposed by Witten, of the SU(n) quantum representations of the mapping class groups which are part of the Reshetikhin-Turaev TQFT for the quantum group U_q(sl(n, C)). In particul ar, we recall the differential geometric construction of Hitchins projectively flat connection in the bundle over Teichmuller space obtained by push-forward of the determinant line bundle over the moduli space of rank n, fixed determinant, semi-stable bundles fibering over Teichmuller space. We recall the relation between the Hitchin connection and Toeplitz operators which was first used by the first named author to prove the asymptotic faithfulness of the SU(n) quantum representations of the mapping class groups. We further review the construction of the formal Hitchin connection, and we discuss its relation to the full asymptotic expansion of the curve operators of Topological Quantum Field Theory. We then go on to identifying the first terms in the formal parallel transport of the Hitchin connection explicitly. This allows us to identify the first terms in the resulting star product on functions on the moduli space. This is seen to agree with the first term in the star product on holonomy functions on these moduli spaces defined by Andersen, Mattes and Reshetikhin.
128 - Mukut Mani Tripathi 2008
In a Riemannian manifold, the existence of a new connection is proved. In particular cases, this connection reduces to several symmetric, semi-symmetric and quarter-symmetric connections; even some of them are not introduced so far. We also find formula for curvature tensor of this new connection.
145 - Yuri A. Kordyukov 2021
We establish the theory of Berezin-Toeplitz quantization on symplectic manifolds of bounded geometry. The quantum space of this quantization is the spectral subspace of the renormalized Bochner Laplacian associated with some interval near zero. We sh ow that this quantization has the correct semiclassical limit.
266 - Pengshuai Shi 2013
In this paper, we study the singularities of two extended Ricci flow systems --- connection Ricci flow and Ricci harmonic flow using newly-defined curvature quantities. Specifically, we give the definition of three types of singularities and their co rresponding singularity models, and then prove the convergence. In addition, for Ricci harmonic flow, we use the monotonicity of functional $ u_alpha$ to show the connection between finite-time singularity and shrinking Ricci harmonic soliton. At last, we explore the property of ancient solutions for Ricci harmonic flow.
58 - Yuri A. Kordyukov 2020
In this paper, we construct a family of Berezin-Toeplitz type quantizations of a compact symplectic manifold. For this, we choose a Riemannian metric on the manifold such that the associated Bochner Laplacian has the same local model at each point (t his is slightly more general than in almost-Kahler quantization). Then the spectrum of the Bochner Laplacian on high tensor powers $L^p$ of the prequantum line bundle $L$ asymptotically splits into clusters of size ${mathcal O}(p^{3/4})$ around the points $pLambda$, where $Lambda$ is an eigenvalue of the model operator (which can be naturally called a Landau level). We develop the Toeplitz operator calculus with the quantum space, which is the eigenspace of the Bochner Laplacian corresponding to the eigebvalues frrom the cluster. We show that it provides a Berezin-Toeplitz quantization. If the cluster corresponds to a Landau level of multiplicity one, we obtain an algebra of Toeplitz operators and a formal star-product. For the lowest Landau level, it recovers the almost Kahler quantization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا