ﻻ يوجد ملخص باللغة العربية
We present the Stochastic Green Function (SGF) algorithm designed for bosons on lattices. This new quantum Monte Carlo algorithm is independent of the dimension of the system, works in continuous imaginary time, and is exact (no error beyond statistical errors). Hamiltonians with several species of bosons (and one-dimensional Bose-Fermi Hamiltonians) can be easily simulated. Some important features of the algorithm are that it works in the canonical ensemble and gives access to n-body Green functions.
In a recent publication (Phys. Rev E 77, 056705 (2008)),we have presented the stochastic Green function (SGF) algorithm, which has the properties of being general and easy to apply to any lattice Hamiltonian of the form H=V-T, where V is diagonal in
A methodical derivation of RKKY interaction in framework of T=0 Green function method is given in great detail. The article is complimentary to standard textbooks on the physics of magnetism and condensed matter physics. It is shown that the methods
A general solution for vacancy-mediated diffusion in the dilute-vacancy/dilute-solute limit for arbitrary crystal structures is derived from the master equation. A general numerical approach to the vacancy lattice Green function reduces to the sum of
In this paper, we propose a new derivation for the Green-Kubo relationship for the liquid-solid friction coefficient, characterizing hydrodynamic slippage at a wall. It is based on a general Langevin approach for the fluctuating wall velocity, involv
The Green-Kubo formula relates the spatial diffusion coefficient to the stationary velocity autocorrelation function. We derive a generalization of the Green-Kubo formula valid for systems with long-range or nonstationary correlations for which the s