ﻻ يوجد ملخص باللغة العربية
We consider a biased random walk $X_n$ on a Galton-Watson tree with leaves in the sub-ballistic regime. We prove that there exists an explicit constant $gamma= gamma(beta) in (0,1)$, depending on the bias $beta$, such that $X_n$ is of order $n^{gamma}$. Denoting $Delta_n$ the hitting time of level $n$, we prove that $Delta_n/n^{1/gamma}$ is tight. Moreover we show that $Delta_n/n^{1/gamma}$ does not converge in law (at least for large values of $beta$). We prove that along the sequences $n_{lambda}(k)=lfloor lambda beta^{gamma k}rfloor$, $Delta_n/n^{1/gamma}$ converges to certain infinitely divisible laws. Key tools for the proof are the classical Harris decomposition for Galton-Watson trees, a new variant of regeneration times and the careful analysis of triangular arrays of i.i.d. heavy-tailed random variables.
In [1] a detailed analysis was given of the large-time asymptotics of the total mass of the solution to the parabolic Anderson model on a supercritical Galton-Watson random tree with an i.i.d. random potential whose marginal distribution is double-ex
This note defines a notion of multiplicity for nodes in a rooted tree and presents an asymptotic calculation of the maximum multiplicity over all leaves in a Bienayme-Galton-Watson tree with critical offspring distribution $xi$, conditioned on the tr
The key to our investigation is an improved (and in a sense sharp) understanding of the survival time of the contact process on star graphs. Using these results, we show that for the contact process on Galton-Watson trees, when the offspring distribu
The aim of this paper is to study rumor processes in random environment. In a rumor process a signal starts from the stations of a fixed vertex (the root) and travels on a graph from vertex to vertex. We consider two rumor processes. In the firework
At each site of a supercritical Galton-Watson tree place a parking spot which can accommodate one car. Initially, an independent and identically distributed number of cars arrive at each vertex. Cars proceed towards the root in discrete time and park