ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of Transonic Shock-Fronts in Three-Dimensional Conical Steady Potential Flow past a Perturbed Cone

439   0   0.0 ( 0 )
 نشر من قبل Beixiang Fang
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Gui-Qiang Chen




اسأل ChatGPT حول البحث

For an upstream supersonic flow past a straight-sided cone in $R^3$ whose vertex angle is less than the critical angle, a transonic (supersonic-subsonic) shock-front attached to the cone vertex can be formed in the flow. In this paper we analyze the stability of transonic shock-fronts in three-dimensional steady potential flow past a perturbed cone. We establish that the self-similar transonic shock-front solution is conditionally stable in structure with respect to the conical perturbation of the cone boundary and the upstream flow in appropriate function spaces. In particular, it is proved that the slope of the shock-front tends asymptotically to the slope of the unperturbed self-similar shock-front downstream at infinity.



قيم البحث

اقرأ أيضاً

We are concerned with the structural stability of conical shocks in the three-dimensional steady supersonic flows past Lipschitz perturbed cones whose vertex angles are less than the critical angle. The flows under consideration are governed by the s teady isothermal Euler equations for potential flow with axisymmetry so that the equations contain a singular geometric source term. We first formulate the shock stability problem as an initial-boundary value problem with the leading conical shock-front as a free boundary, and then establish the existence and asymptotic behavior of global entropy solutions of bounded variation (BV) of the problem. To achieve this, we first develop a modified Glimm scheme to construct approximate solutions via self-similar solutions as building blocks in order to incorporate with the geometric source term. Then we introduce the Glimm-type functional, based on the local interaction estimates between weak waves, the strong leading conical shock, and self-similar solutions, as well as the estimates of the center changes of the self-similar solutions. To make sure the decreasing of the Glimm-type functional, we choose appropriate weights by careful asymptotic analysis of the reflection coefficients in the interaction estimates, when the Mach number of the incoming flow is sufficiently large. Finally, we establish the existence of global entropy solutions involving a strong leading conical shock-front, besides weak waves, under the conditions that the Mach number of the incoming flow is sufficiently large and the weighted total variation of the slopes of the generating curve of the Lipschitz perturbed cone is sufficiently small. Furthermore, the entropy solution is shown to approach asymptotically the self-similar solution that is determined by the incoming flow and the asymptotic tangent of the cone boundary at infinity.
We are concerned with the stability of multidimensional (M-D) transonic shocks in steady supersonic flow past multidimensional wedges. One of our motivations is that the global stability issue for the M-D case is much more sensitive than that for the 2-D case, which requires more careful rigorous mathematical analysis. In this paper, we develop a nonlinear approach and employ it to establish the stability of weak shock solutions containing a transonic shock-front for potential flow with respect to the M-D perturbation of the wedge boundary in appropriate function spaces. To achieve this, we first formulate the stability problem as a free boundary problem for nonlinear elliptic equations. Then we introduce the partial hodograph transformation to reduce the free boundary problem into a fixed boundary value problem near a background solution with fully nonlinear boundary conditions for second-order nonlinear elliptic equations in an unbounded domain. To solve this reduced problem, we linearize the nonlinear problem on the background shock solution and then, after solving this linearized elliptic problem, develop a nonlinear iteration scheme that is proved to be contractive.
225 - Shangkun Weng , Chunjing Xie , 2019
In this paper, we prove the structural stability of the transonic shocks for three dimensional axisymmetric Euler system with swirl velocity under the perturbations for the incoming supersonic flow, the nozzle boundary, and the exit pressure. Compare d with the known results on the stability of transonic shocks, one of the major difficulties for the axisymmetric flows with swirls is that corner singularities near the intersection point of the shock surface and nozzle boundary and the artificial singularity near the axis appear simultaneously. One of the key points in the analysis for this paper is the introduction of an invertible Lagrangian transformation which can straighten the streamlines in the whole nozzle and help to represent the solutions of transport equations explicitly.
We are concerned with the two-dimensional steady supersonic reacting Euler flow past Lipschitz bending walls that are small perturbations of a convex one, and establish the existence of global entropy solutions when the total variation of both the in itial data and the slope of the boundary is sufficiently small. The flow is governed by an ideal polytropic gas and undergoes a one-step exothermic chemical reaction under the reaction rate function that is Lipschtiz and has a positive lower bound. The heat released by the reaction may cause the total variation of the solution to increase along the flow direction. We employ the modified wave-front tracking scheme to construct approximate solutions and develop a Glimm-type functional by incorporating the approximate strong rarefaction waves and Lipschitz bending walls to obtain the uniform bound on the total variation of the approximate solutions. Then we employ this bound to prove the convergence of the approximate solutions to a global entropy solution that contains a strong rarefaction wave generated by the Lipschitz bending wall. In addition, the asymptotic behavior of the entropy solution in the flow direction is also analyzed.
153 - Hairong Yuan , Yue He 2008
In this paper we prove existence, uniqueness and regularity of certain perturbed (subsonic--supersonic) transonic potential flows in a two-dimensional Riemannian manifold with convergent-divergent metric, which is an approximate model of the de Laval nozzle in aerodynamics. The result indicates that transonic flows obtained by quasi-one-dimensional flow model in fluid dynamics are stable with respect to the perturbation of the velocity potential function at the entry (i.e., tangential velocity along the entry) of the nozzle. The proof is based upon linear theory of elliptic-hyperbolic mixed type equations in physical space and a nonlinear iteration method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا