ﻻ يوجد ملخص باللغة العربية
The formation of a strange or hybrid star from a neutron star progenitor is believed to occur when the central stellar density exceeds a critical value. If the transition from hadron to quark matter is of first order, the event has to release a huge amount of energy in a very short time and we would be able to observe the phenomenon even if it is at cosmological distance far from us; most likely, such violent quark deconfinement would be associated with at least a fraction of the observed gamma ray bursts. If we allow for temporal variations of fundamental constants like $Lambda_{QCD}$ or $G_N$, we can expect that neutron stars with an initial central density just below the critical value can enter into the region where strange or hybrid stars are the true ground state. From the observed rate of long gamma ray bursts, we are able to deduce the constraint $dot{G}_N/G_N lesssim 10^{-17} {rm yr^{-1}}$, which is about 5 orders of magnitude more stringent than the strongest previous bounds on a possible increasing $G_N$.
Any variation of the fundamental physical constants, and more particularly of the fine structure constant, $alpha$, or of the mass of the electron, $m_e$, would affect the recombination history of the Universe and cause an imprint on the cosmic micro
We investigate the effect of a variation of fundamental constants on primordial element production in Big Bang nucleosynthesis (BBN). We focus on the effect of a possible change in the nucleon-nucleon interaction on nuclear reaction rates involving t
Atomic microwave clocks based on hyperfine transitions, such as the caesium standard, tick with a frequency that is proportional to the magnetic moment of the nucleus. This magnetic moment varies strongly between isotopes of the same atom, while all
We compute the time variation of the fundamental constants (such as the ratio of the proton mass to the electron mass, the strong coupling constant, the fine structure constant and Newtons constant) within the context of the so-called running vacuum
We have detected the four 18cm OH lines from the $z sim 0.765$ gravitational lens toward PMN J0134-0931. The 1612 and 1720 MHz lines are in conjugate absorption and emission, providing a laboratory to test the evolution of fundamental constants over