ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of bulk energy in nuclear multifragmentation

243   0   0.0 ( 0 )
 نشر من قبل Nihal Buyukcizmeci
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف N. Buyukcizmeci




اسأل ChatGPT حول البحث

Because of thermal expansion and residual interactions, hot nuclear fragments produced in multifragmentation reactions may have lower nucleon density than the equilibrium density of cold nuclei. In terms of liquid-drop model this effect can be taken into account by reducing the bulk energy of fragments. We study the influence of this change on fragment yields and isotope distributions within the framework of the statistical multifragmentation model. Similarities and differences with previously discussed modifications of symmetry and surface energies of nuclei are analyzed.



قيم البحث

اقرأ أيضاً

97 - A.S. Botvina 2006
Within the statistical multifragmentation model we study modifications of the surface and symmetry energy of primary fragments in the freeze-out volume. The ALADIN experimental data on multifragmentation obtained in reactions induced by high-energy p rojectiles with different neutron richness are analyzed. We have extracted the isospin dependence of the surface energy coefficient at different degrees of fragmentation. We conclude that the surface energy of hot fragments produced in multifragmentation reactions differs from the values extracted for isolated nuclei at low excitation. At high fragment multiplicity, it becomes nearly independent of the neutron content of the fragments.
A systematic analysis of the moments of the fragment size distribution has been carried out for the multifragmentation (MF)of 1A GeV Au, La, and Kr on carbon. The breakup of Au and La is consistent with a continuous thermal phase transition. The data indicate that the excitation energy per nucleon and isotopic temperature at the critical point decrease with increasing system size. This trend is attributed primarily to the increasing Coulomb energy with finite size effects playing a smaller role.
372 - A.S. Botvina 2008
In nuclear reactions induced by hadrons and ions of high energies, nuclei can disintegrate into many fragments during a short time (~100 fm/c). This phenomenon known as nuclear multifragmentation was under intensive investigation last 20 years. It wa s established that multifragmentation is an universal process taking place in all reactions when the excitation energy transferred to nuclei is high enough, more than 3 MeV per nucleon, independently on the initial dynamical stage of the reactions. Very known compound nucleus decay processes (sequential evaporation and fission), which are usual for low energies, disappear and multifragmentation dominates at high excitation energy. For this reason, calculation of multifragmentation must be carried on in all cases when production of highly excited nuclei is expected, including spallation reactions. From the other hand, one can consider multifragmentation as manifestation of the liquid-gas phase transition in finite nuclei. This gives way for studying nuclear matter at subnuclear densities and for applications of properties of nuclear matter extracted from multifragmentation reactions in astrophysics. In this contribution, the Statistical Multifragmentation Model (SMM), which combines the compound nucleus processes at low energies and multifragmentation at high energies, is described. The most important ingredients of the model are discussed.
253 - C.B.Das , S.Das Gupta , W.G.Lynch 2004
A great many observables seen in intermediate energy heavy ion collisions can be explained on the basis of statistical equilibrium. Calculations based on statistical equilibrium can be implemented in microcanonical ensemble (energy and number of part icles in the system are kept fixed), canonical ensemble (temperature and number of particles are kept fixed) or grand canonical ensemble (fixed temperature and a variable number of particles but with an assigned average). This paper deals with calculations with canonical ensembles. A recursive relation developed recently allows calculations with arbitrary precision for many nuclear problems. Calculations are done to study the nature of phase transition in intermediate energy heavy ion collision, to study the caloric curves for nuclei and to explore the possibility of negative specific heat because of the finiteness of nuclear systems. The model can also be used for detailed calculations of other observables not connected with phase transitions, such as populations of selected isotopes in a heavy ion collision. The model also serves a pedagogical purpose. For the problems at hand, both the canonical and grand canonical solutions are obtainable with arbitrary accuracy hence we can compare the values of observables obtained from the canonical calculations with those from the grand canonical. Sometimes, very interesting discrepancies are found. To illustrate the predictive power of the model, calculated observables are com$data from the central collisions of Sn isotopes.
We demonstrate, within symmetry unrestricted time-dependent density functional theory, the existence of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the pairing field induces solitonic excitations in the colliding nuclear systems, leading to qualitative changes in the reaction dynamics. The solitonic excitation prevents collective energy dissipation and effectively suppresses fusion cross section. We demonstrate how the variations of the total kinetic energy of the fragments can be traced back to the energy stored in the superfluid junction of colliding nuclei. Both contact time and scattering angle in non-central collisions are significantly affected. The modification of the fusion cross section and possibilities for its experimental detection are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا