ﻻ يوجد ملخص باللغة العربية
A hypergraph G with n vertices and m hyperedges with d endpoints each is (k,l)-sparse if for all sub-hypergraphs G on n vertices and m edges, mle kn-l. For integers k and l satisfying 0le lle dk-1, this is known to be a linearly representable matroidal family. Motivated by problems in rigidity theory, we give a new linear representation theorem for the (k,l)-sparse hypergraphs that is natural; i.e., the representing matrix captures the vertex-edge incidence structure of the underlying hypergraph G.
We describe a new algorithm, the $(k,ell)$-pebble game with colors, and use it obtain a characterization of the family of $(k,ell)$-sparse graphs and algorithmic solutions to a family of problems concerning tree decompositions of graphs. Special inst
We describe a new algorithm, the $(k,\\ell)$-pebble game with colors, and use\nit obtain a characterization of the family of $(k,\\ell)$-sparse graphs and\nalgorithmic solutions to a family of problems concerning tree decompositions of\ngraphs. Spe
Motivated by a rigidity-theoretic perspective on the Localization Problem in 2D, we develop an algorithm for computing circuit polynomials in the algebraic rigidity matroid associated to the Cayley-Menger ideal for $n$ points in 2D. We introduce comb
We introduce delta-graphic matroids, which are matroids whose bases form graphic delta-matroids. The class of delta-graphic matroids contains graphic matroids as well as cographic matroids and is a proper subclass of the class of regular matroids. We
We construct minimal cellular resolutions of squarefree monomial ideals arising from hyperplane arrangements, matroids and oriented matroids. These are Stanley-Reisner ideals of complexes of independent sets, and of triangulations of Lawrence matroid