ﻻ يوجد ملخص باللغة العربية
Hara, Takemura and Yoshida discuss toric ideals arising from two way subtable sum problems and shows that these toric ideals are generated by quadratic binomials if and only if the subtables are either diagonal or triangular. In the present paper, we show that if the subtables are either diagonal or triangular, then their toric ideals possess quadratic Groebner bases.
It has been well-known that for two-way contingency tables with fixed row sums and column sums the set of square-free moves of degree two forms a Markov basis. However when we impose an additional constraint that the sum of a subtable is also fixed,
In this paper we introduce a new and large family of configurations whose toric ideals possess quadratic Groebner bases. As an application, a generalization of algebras of Segre-Veronese type will be studied.
The purpose of this paper is twofold. In the first part we concentrate on hyperplane sections of algebraic schemes, and present results for determining when Grobner bases pass to the quotient and when they can be lifted. The main difficulty to overco
We describe the universal Groebner basis of the ideal of maximal minors and the ideal of $2$-minors of a multigraded matrix of linear forms. Our results imply that the ideals are radical and provide bounds on the regularity. In particular, the ideals
A set of polynomials G in a polynomial ring S over a field is said to be a universal Gru007foebner basis, if G is a Gru007foebner basis with respect to every term order on S. Twenty years ago Bernstein, Sturmfels, and Zelevinsky proved that the set o