ﻻ يوجد ملخص باللغة العربية
Based on first-principles calculations we predict that periodically repeated junctions of armchair graphene nanoribbons of different widths form superlattice structures. In these superlattice heterostructures the width and the energy gap are modulated in real space and specific states are confined in certain segments. Orientation of constituent nanoribbons, their width and length, the symmetry of the junction are the structural parameters to engineer electronic properties of these quantum structures. Not only the size modulation, but also composition modulation, such as periodically repeated, commensurate heterojunctions of BN and graphene honeycomb nanoribbons result in a multiple quantum well structure. We showed that these graphene based quantum structures can introduce novel concepts to design nanodevices.
In this work we study thermoelectric properties of graphene nanoribbons with side-attached organic molecules. By adopting a single-band tight binding Hamiltonian and the Greens function formalism, we calculated the transmission and Seebeck coefficien
Interactions between localized plasmons in proximal nanostructures is a well-studied phenomenon. Here we explore plasmon plasmon interactions in connected extended systems. Such systems can now be easily produced using graphene. Specifically we emplo
The main challenge to exploiting plasmons for gas vibrational mode sensing is the extremely weak infrared absorption of gas species. In this work, we explore the possibility of trapping free gas molecules via surface adsorption, optical, or electrost
Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNR
We consider the gapped graphene superlattice (SL) constructed in accordance with the Fibonacci rule. Quasi-periodic modulation is due to the difference in the values of the energy gap in different SL elements. It is shown that the effective splitting