ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Information Rates of the Plenoptic Function

242   0   0.0 ( 0 )
 نشر من قبل Arthur Cunha
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The {it plenoptic function} (Adelson and Bergen, 91) describes the visual information available to an observer at any point in space and time. Samples of the plenoptic function (POF) are seen in video and in general visual content, and represent large amounts of information. In this paper we propose a stochastic model to study the compression limits of the plenoptic function. In the proposed framework, we isolate the two fundamental sources of information in the POF: the one representing the camera motion and the other representing the information complexity of the reality being acquired and transmitted. The sources of information are combined, generating a stochastic process that we study in detail. We first propose a model for ensembles of realities that do not change over time. The proposed model is simple in that it enables us to derive precise coding bounds in the information-theoretic sense that are sharp in a number of cases of practical interest. For this simple case of static realities and camera motion, our results indicate that coding practice is in accordance with optimal coding from an information-theoretic standpoint. The model is further extended to account for visual realities that change over time. We derive bounds on the lossless and lossy information rates for this dynamic reality model, stating conditions under which the bounds are tight. Examples with synthetic sources suggest that in the presence of scene dynamics, simple hybrid coding using motion/displacement estimation with DPCM performs considerably suboptimally relative to the true rate-distortion bound.



قيم البحث

اقرأ أيضاً

Many popular tourist landmarks are captured in a multitude of online, public photos. These photos represent a sparse and unstructured sampling of the plenoptic function for a particular scene. In this paper,we present a new approach to novel view syn thesis under time-varying illumination from such data. Our approach builds on the recent multi-plane image (MPI) format for representing local light fields under fixed viewing conditions. We introduce a new DeepMPI representation, motivated by observations on the sparsity structure of the plenoptic function, that allows for real-time synthesis of photorealistic views that are continuous in both space and across changes in lighting. Our method can synthesize the same compelling parallax and view-dependent effects as previous MPI methods, while simultaneously interpolating along changes in reflectance and illumination with time. We show how to learn a model of these effects in an unsupervised way from an unstructured collection of photos without temporal registration, demonstrating significant improvements over recent work in neural rendering. More information can be found crowdsampling.io.
Achievable information rates are used as a metric to design novel modulation formats via geometric shaping. The proposed geometrically shaped 256-ary constellation achieves SNR gains of up to 1.18 dB.
106 - Tao Guo , Ruida Zhou , Chao Tian 2019
We consider information leakage to the user in private information retrieval (PIR) systems. Information leakage can be measured in terms of individual message leakage or total leakage. Individual message leakage, or simply individual leakage, is defi ned as the amount of information that the user can obtain on any individual message that is not being requested, and the total leakage is defined as the amount of information that the user can obtain about all the other messages except the one being requested. In this work, we characterize the tradeoff between the minimum download cost and the individual leakage, and that for the total leakage, respectively. New codes are proposed to achieve these optimal tradeoffs, which are also shown to be optimal in terms of the message size. We further characterize the optimal tradeoff between the minimum amount of common randomness and the total leakage. Moreover, we show that under individual leakage, common randomness is in fact unnecessary when there are more than two messages.
This paper offers a characterization of fundamental limits on the classification and reconstruction of high-dimensional signals from low-dimensional features, in the presence of side information. We consider a scenario where a decoder has access both to linear features of the signal of interest and to linear features of the side information signal; while the side information may be in a compressed form, the objective is recovery or classification of the primary signal, not the side information. The signal of interest and the side information are each assumed to have (distinct) latent discrete labels; conditioned on these two labels, the signal of interest and side information are drawn from a multivariate Gaussian distribution. With joint probabilities on the latent labels, the overall signal-(side information) representation is defined by a Gaussian mixture model. We then provide sharp sufficient and/or necessary conditions for these quantities to approach zero when the covariance matrices of the Gaussians are nearly low-rank. These conditions, which are reminiscent of the well-known Slepian-Wolf and Wyner-Ziv conditions, are a function of the number of linear features extracted from the signal of interest, the number of linear features extracted from the side information signal, and the geometry of these signals and their interplay. Moreover, on assuming that the signal of interest and the side information obey such an approximately low-rank model, we derive expansions of the reconstruction error as a function of the deviation from an exactly low-rank model; such expansions also allow identification of operational regimes where the impact of side information on signal reconstruction is most relevant. Our framework, which offers a principled mechanism to integrate side information in high-dimensional data problems, is also tested in the context of imaging applications.
We address the problem of how to optimally schedule data packets over an unreliable channel in order to minimize the estimation error of a simple-to-implement remote linear estimator using a constant Kalman gain to track the state of a Gauss Markov p rocess. The remote estimator receives time-stamped data packets which contain noisy observations of the process. Additionally, they also contain the information about the quality of the sensor source, i.e., the variance of the observation noise that was used to generate the packet. In order to minimize the estimation error, the scheduler needs to use both while prioritizing packet transmissions. It is shown that a simple index rule that calculates the value of information (VoI) of each packet, and then schedules the packet with the largest current value of VoI, is optimal. The VoI of a packet decreases with its age, and increases with the precision of the source. Thus, we conclude that, for constant filter gains, a policy which minimizes the age of information does not necessarily maximize the estimator performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا