ﻻ يوجد ملخص باللغة العربية
In this paper, we classify space-time curves up to Galilean group of transformations with Cartans method of equivalence. As an aim, we elicit invariats from action of special Galilean group on space-time curves, that are, in fact, conservation laws in physics. We also state a necessary and sufficient condition for equivalent Galilean motions.
We present a formalism of Galilean quantum mechanics in non-inertial reference frames and discuss its implications for the equivalence principle. This extension of quantum mechanics rests on the Galilean line group, the semidirect product of the real
This paper undertakes a study of the nature of the force associated with the local U (1) gauge symmetry of a non-relativistic quantum particle. To ensure invariance under local U (1) symmetry, a matter field must couple to a gauge field. We show that
We study the Schlesinger system of partial differential equations in the case when the unknown matrices of arbitrary size $(ptimes p)$ are triangular and the eigenvalues of each matrix form an arithmetic progression with a rational difference $q$, th
We describe a conjectural classification of Poisson vertex algebras of CFT type and of Poisson vertex algebras in one differential variable (= scalar Hamiltonian operators).
We prove that the topological recursion formalism can be used to compute the WKB expansion of solutions of second order differential operators obtained by quantization of any hyper-elliptic curve. We express this quantum curve in terms of spectral Da