ترغب بنشر مسار تعليمي؟ اضغط هنا

Applying a resources framework to analysis of the Force and Motion Conceptual Evaluation

186   0   0.0 ( 0 )
 نشر من قبل Trevor Smith
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest one redefinition of common clusters of questions used to analyze student responses on the Force and Motion Conceptual Evaluation (FMCE). Our goal is to move beyond the expert/novice analysis of student learning based on pre-/post-testing and the correctness of responses (either on the overall test or on clusters of questions defined solely by content). We use a resources framework, taking special note of the contextual and representational dependence of questions with seemingly similar physics content. We analyze clusters in ways that allow the most common incorrect answers to give as much, or more, information as the correctness of responses in that cluster. Furthermore, we show that false positives can be found, especially on questions dealing with Newtons Third Law.



قيم البحث

اقرأ أيضاً

Ishimoto, Davenport, and Wittmann have previously reported analyses of data from student responses to the Force and Motion Conceptual Evaluation (FMCE), in which they used item response curves (IRCs) to make claims about American and Japanese student s relative likelihood to choose certain incorrect responses to some questions. We have used an independent data set of over 6,500 American students responses to the FMCE to generate IRCs to test their claims. Converting the IRCs to vectors, we used dot product analysis to compare each response item quantitatively. For most questions, our analyses are consistent with Ishimoto, Davenport, and Wittmann, with some results suggesting more minor differences between American and Japanese students than previously reported. We also highlight the pedagogical advantages of using IRCs to determine the differences in response patterns for different populations to better understand student thinking prior to instruction.
In this paper, I discuss my personal journey through one research tradition, that of the resources framework, and how it has evolved over time. In my present work, understanding learners reasoning in physics in terms of the construction of large-scal e models from small-scale resources emphasizes the person doing the constructing over the physics they are discussing. In this human-centered approach, I find value not in the correctness or incorrectness of a given response, but in the nature of construction, the individuals evaluation of their own ideas, and the communication between learners as they seek to understand each other. The resources framework has driven my attention toward a human-centered approach, and has had an effect on both my professional and personal life, in the process. In addition, events in my personal life have proven relevant to my professional work in ways that are reflected by my use of the resources framework to understand knowledge and learning.
Conversational search (CS) has recently become a significant focus of the information retrieval (IR) research community. Multiple studies have been conducted which explore the concept of conversational search. Understanding and advancing research in CS requires careful and detailed evaluation. Existing CS studies have been limited to evaluation based on simple user feedback on task completion. We propose a CS evaluation framework which includes multiple dimensions: search experience, knowledge gain, software usability, cognitive load and user experience, based on studies of conversational systems and IR. We introduce these evaluation criteria and propose their use in a framework for the evaluation of CS systems.
We discuss the development and validation of a conceptual multiple-choice survey instrument called the Survey of Thermodynamic Processes and First and Second Laws (STPFaSL) suitable for introductory physics courses. The survey instrument uses common student difficulties with these concepts as resources in that the incorrect answers to the multiple-choice questions were guided by them. After the development and validation of the survey instrument, the final version was administered at six different institutions. It was administered to introductory physics students in various traditionally taught calculus-based and algebra-based classes in paper-pencil format before and after traditional lecture-based instruction in relevant concepts. We also administered the survey instrument to upper-level undergraduates majoring in physics and Ph.D. students for bench marking and for content validity and compared their performance with those of introductory students for whom the survey is intended. We find that although the survey instrument focuses on thermodynamics concepts covered in introductory courses, it is challenging even for advanced students. A comparison with the base line data on the validated survey instrument presented here can help instructors evaluate the effectiveness of innovative pedagogies designed to help students develop a solid grasp of these concepts.
A bicycle wheel that was initially spinning freely was placed in contact with a rough surface and a digital film was made of its motion. Using Tracker software for video analysis, we obtained the velocity vectors for several points on the wheel, in t he frame of reference of the laboratory as well as in a relative frame of reference having as its origin the wheel`s center of mass. The velocity of the wheel`s point of contact with the floor was also determined obtaining then a complete picture of the kinematic state of the wheel in both frames of reference. An empirical approach of this sort to problems in mechanics can contribute to overcoming the considerable difficulties they entail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا