ﻻ يوجد ملخص باللغة العربية
We generalize the recent study of random space-filling bearings to a more realistic situation, where the spacing offset varies randomly during the space-filling procedure, and show that it reproduces well the size-distributions observed in recent studies of real fault gouges. In particular, we show that the fractal dimensions of random polydisperse bearings sweep predominantly the low range of values in the spectrum of fractal dimensions observed along real faults, which strengthen the evidence that polydisperse bearings may explain the occurrence of seismic gaps in nature. In addition, the influence of different distributions for the offset is studied and we find that the uniform distribution is the best choice for reproducing the size-distribution of fault gouges.
We use a new version of the reversible Parking Lot Model to study the compaction of vibrated polydisperse media. The particle sizes are distributed according to a truncated power law. We introduce a self-consistent desorption mechanism with a hierarc
We study the local load sharing fiber bundle model and its energy burst statistics. While it is known that the avalanche size distribution of the model is exponential, we numerically show here that the avalanche size ($s$) and the corresponding energ
The solid-solid coexistence of a polydisperse hard sphere system is studied by using the Monte Carlo simulation. The results show that for large enough polydispersity the solid-solid coexistence state is more stable than the single-phase solid. The t
Maximum entropy models provide the least constrained probability distributions that reproduce statistical properties of experimental datasets. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large b
The structure of polydisperse hard sphere fluids, in the presence of a wall, is studied by the Rosenfeld density functional theory. Within this approach, the local excess free energy depends on only four combinations of the full set of density fields