ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Nature of the Weakest Intergalactic Magnetic Fields with the High Energy Emission of Gamma-Ray Bursts

93   0   0.0 ( 0 )
 نشر من قبل Kiyotomo Ichiki
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the delayed, secondary GeV-TeV emission of gamma-ray bursts and its potential to probe the nature of intergalactic magnetic fields. Geometrical effects are properly taken into account for the time delay between primary high energy photons and secondary inverse Compton photons from electron-positron pairs, which are produced in $gamma$-$gamma$ interactions with background radiation fields and deflected by intervening magnetic fields. The time-dependent spectra of the delayed emission are evaluated for a wide range of magnetic field strengths and redshifts. The typical flux and delay time of secondary photons from bursts at $z sim 1$ are respectively $sim 10^{-8}$ GeV cm$^{-2}$ s$^{-1}$ and $sim 10^4$ s if the field strengths are $sim 10^{-18}$ G, as might be the case in intergalactic void regions. We find crucial differences between the cases of coherent and tangled magnetic fields, as well as dependences on the field coherence length.



قيم البحث

اقرأ أيضاً

We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescopes Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermis Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emissi on above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the { u}F{ u} spectra (Epk). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above Epk than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cut-off in their high-energy spectra, which if assumed to be due to {gamma}{gamma} attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT- detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.
High-energy emission from gamma-ray bursts (GRBs) can give rise to pair echos, i.e. delayed inverse Compton emission from secondary $e^{pm}$ pairs produced in $gamma-gamma$ interactions with intergalactic background radiation. We investigate the dete ctability of such emission with modern-day gamma-ray telescopes. The spectra and light curves are calculated for a wide range of parameters, applying the formalism recently developed by Ichiki et al. The flux depends strongly on the unknown magnitude and coherence length of intergalactic magnetic fields, and we delineate the range of field strength and redshift that allow detectable echos. Relevant uncertainties such as the high-energy cutoff of the primary gamma-ray spectrum and the intensity of the cosmic infrared background are addressed. GLAST and MAGIC may be able to detect pair echo emission from GRBs with redshift $lesssim 1$ if the primary spectra extend to $sim 10 ~ {rm TeV}$.
125 - Lara Nava 2018
The number of Gamma-Ray Bursts (GRBs) detected at high energies ($sim,0.1-100$ GeV) has seen a rapid increase over the last decade, thanks to observations from the Fermi-Large Area Telescope. The improved statistics and quality of data resulted in a better characterisation of the high-energy emission properties and in stronger constraints on theoretical models. In spite of the many achievements and progresses, several observational properties still represent a challenge for theoretical models, revealing how our understanding is far from being complete. This paper reviews the main spectral and temporal properties of $sim,0.1-100$ GeV emission from GRBs and summarises the most promising theoretical models proposed to interpret the observations. Since a boost for the understanding of GeV radiation might come from observations at even higher energies, the present status and future prospects for observations at very-high energies (above $sim$ 100 GeV) are also discussed. The improved sensitivity of upcoming facilities, coupled to theoretical predictions, supports the concrete possibility for future ground GRB detections in the high/very-high energy domain.
Star-forming regions have been proposed as potential Galactic cosmic-ray accelerators for decades. Cosmic-ray acceleration can be probed through observations of gamma-rays produced in inelastic proton-proton collisions, at GeV and TeV energies. In th is paper, we analyze more than 11 years of Fermi-LAT data from the direction of Westerlund 2, one of the most massive and best-studied star-forming regions in our Galaxy. In particular, we investigate the characteristics of the bright pulsar PSR J1023-5746 that dominates the gamma-ray emission below a few GeV at the position of Westerlund 2, and the underlying extended source FGES J1023.3-5747. The analysis results in a clear identification of FGES J1023.3-5747 as the GeV counterpart of the TeV source HESS J1023-575, through its morphological and spectral properties. This identification provides new clues about the origin of the HESS J1023-575 gamma-ray emission, favouring a hadronic origin of the emission, powered by Westerlund 2, rather than a leptonic origin related to either the pulsar wind nebula associated with PSR J1023-5746 or the cluster itself. This result indirectly supports the hypothesis that star-forming regions can contribute to the cosmic-ray sea observed in our Galaxy
Star-forming regions have been proposed as potential Galactic cosmic-ray accelerators for decades. Cosmic ray acceleration can be probed through observations of gamma-rays produced in inelastic proton-proton collisions, at GeV and TeV energies. We an alyze more than 11 years of Fermi-LAT data from the direction of Westerlund 2, one of the most massive and best-studied star-forming regions in our Galaxy. The spectral and morphological characteristics of the LAT source agree with the ones in the TeV regime (HESS J1023-575), allowing the description of the gamma-ray source from a few hundreds of MeV to a few tens of TeVs. We will present the results and discuss the implications of the identification with the stellar cluster and the radiation mechanism involved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا