ﻻ يوجد ملخص باللغة العربية
We show that asymptotically hyperbolic initial data satisfying smallness conditions in dimensions $nge 3$, or fast decay conditions in $nge 5$, or a genericity condition in $nge 9$, can be deformed, by a deformation which is supported arbitrarily far in the asymptotic region, to ones which are exactly Kottler (Schwarzschild- adS) in the asymptotic region.
Rigidity results for asymptotically locally hyperbolic manifolds with lower bounds on scalar curvature are proved using spinor methods related to the Witten proof of the positive mass theorem. The argument is based on a study of the Dirac operator de
We show any Riemannian curvature model can be geometrically realized by a manifold with constant scalar curvature. We also show that any pseudo-Hermitian curvature model, para-Hermitian curvature model, hyper-pseudo-Hermitian curvature model, or hype
We study the problem of deforming a Riemannian metric to a conformal one with nonzero constant scalar curvature and nonzero constant boundary mean curvature on a compact manifold of dimension $ngeq 3$. We prove the existence of such conformal metrics
Some recent results obtained by the author and collaborators about QFT in asymptotically flat spacetimes at null infinity are summarized and reviewed. In particular it is focused on the physical properties of ground states in the bulk induced by the BMS-invariant state defined at null infinity.
A connected Riemannian manifold M has constant vector curvature epsilon, denoted by cvc(epsilon), if every tangent vector v in TM lies in a 2-plane with sectional curvature epsilon. By scaling the metric on M, we can always assume that epsilon = -1,