ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum-fluid dynamics of microcavity polaritons

120   0   0.0 ( 0 )
 نشر من قبل Alberto Amo
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Semiconductor microcavities offer a unique system to investigate the physics of weakly interacting bosons. Their elementary excitations, polaritons--a mixture of excitons and photons--behave, in the low density limit, as bosons that can undergo a phase transition to a regime characterised by long range coherence. Condensates of polaritons have been advocated as candidates for superfluidity; and the formation of vortices as well as elementary excitations with a linear dispersion are actively sought after. In this work, we have created and set in motion a macroscopically degenerate state of polaritons and let it collide with a variety of defects present in the sample. Our experiments show striking manifestations of a coherent light-matter packet that displays features of a superfluid, although one of a highly unusual character as it involves an out-of-equilibrium dissipative system where it travels at ultra-fast velocity of the order of 1% the speed of light. Our main results are the observation of i) a linear polariton dispersion accompanied with diffusion-less motion, ii) flow without resistance when crossing an obstacle, iii) suppression of Rayleigh scattering and iv) splitting into two fluids when the size of the obstacle is comparable with the size of the wavepacket. This work opens the way to the investigation of new phenomenology of out-of-equilibrium condensates.



قيم البحث

اقرأ أيضاً

61 - M. D. Martin , L. Vina , J.K. Son 2000
We have studied polariton spin dynamics in a GaAs/AlGaAs microcavity by means of polarization- and time-resolved photoluminescence spectroscopy as a function of excitation density and normal mode splitting. The experiments reveal a novel behavior of the degree of polarization of the emission, namely the existence of a finite delay to reach its maximum value. We have also found that the stimulated emission of the lower polariton branch has a strong influence on spin dynamics: in an interval of $sim$150 ps the polarization changes from +100% to negative values as high as -60%. This strong modulation of the polarization and its high speed may open new possibilities for spin-based devices.
We report direct observation of the strong exciton-photon coupling in ZnO tapered whispering gallery (WG) microcavity at room temperature. By scanning excitations along the tapered arm of ZnO tetrapod using micro-photoluminescence spectrometer with d ifferent polarizations, we observed a transition from the pure WG optical modes in the weak interaction regime to the excitonic polariton in the strong coupling regime. The experimental observations are well described by using the plane wave model including excitonic polariton dispersion relation. This provides a direct mapping of the polariton dispersion, and thus a comprehensive picture for coupling of different excitons with differently polarized WG modes.
46 - Augustin Baas 2005
We investigate experimentally one of the main features of a quantum fluid constituted by exciton polaritons in a semiconductor microcavity, that is quantum degeneracy of a macroscopic fraction of the particles. We show that resonant pumping allows to create a macroscopic population of polaritons in one quantum state. Furthermore we demonstrate that parametric polariton scattering results in the transfer of a macroscopic population of polariton from one single quantum state into another one. Finally we briefly outline a simple method which provides direct evidence of the first-order spatial coherence of the transferred population.
We present a simple method to create an in-plane lateral potential in a semiconductor microcavity using a metal thin-film. Two types of potential are produced: a circular aperture and a one-dimensional (1D) periodic grating pattern. The amplitude of the potential induced by a 24 nm-6 nm Au/Ti film is on the order of a few hundreds of ueV measured at 6 ~ 8 K. Since the metal layer makes the electromagnetic fields to be close to zero at the metal-semiconductor interface, the photon mode is confined more inside of the cavity. As a consequence, the effective cavity length is reduced under the metal film, and the corresponding cavity resonance is blue-shifted. Our experimental results are in a good agreement with theoretical estimates. In addition, by applying a DC electric voltage to the metal film, we are able to modify the quantum well exciton mode due to the quantum confined Stark effect, inducing a ~ 1 meV potential at ~ 20 kV/cm. Our method produces a controllable in-plane spatial trap potential for lower exciton-polaritons (LPs), which can be a building block towards 1D arrays and 2D lattices of LP condensates.
We study the polarization optical properties of microcavities with embedded (110)-oriented quantum wells. The spin dynamics of exciton polaritons in such structures is governed by the interplay of the spin-orbit splitting of exciton states, which is odd in the in-plane momentum, and the longitudinal-transverse splitting of cavity modes, which is even in the momentum. We demonstrate the generation of polariton spin currents by linearly polarized optical pump and analyze the arising polariton spin textures in the cavity plane. Tuning the excitation spot size, which controls the polariton distribution in the momentum space, one obtains symmetric or asymmetric spin textures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا