ﻻ يوجد ملخص باللغة العربية
Correlation functions, constructed from directional projections of the relative velocities of fragments, are used to determine the shape of the breakup volume in coordinate space. For central collisions of 129Xe + natSn at 50 MeV per nucleon incident energy, measured with the 4pi multi-detector INDRA at GSI, a prolate shape aligned along the beam direction with an axis ratio of 1:0.7 is deduced. The sensitivity of the method is discussed in comparison with conventional fragment-fragment velocity correlations.
The characteristics of intermediate mass fragments (IMFs: 3<=Z<=20) produced in mid-peripheral and central collisions are compared. We compare IMFs detected at mid-velocity with those evaporated from the excited projectile-like fragment (PLF*). On av
Kinetic energies of light fragments A <= 10 from the decay of target spectators in 197Au 197Au collisions at 1000 MeV per nucleon have been measured with high-resolution telescopes at backward angles. Except for protons and apart from the observed ev
Kinetic energy spectra and fragment velocity correlations, simulated by means of stochastic mean-field calculations, are successfully confronted with experimental data for single multifragmenting sources prepared at the same excitation energy per nuc
A previous analysis of the charge (Z) correlations in the $Delta Z-<Z>$ plane for Xe+Sn central collisions at 32 MeV/u has shown an enhancement in the production of equally sized fragments (low $Delta Z$) which was interpreted as an evidence for spin
The characteristics, in particular the isotopic composition (N/Z), of intermediate mass fragments (IMF : 3<=Z<=20) produced near the center-of-mass in mid-peripheral and central collisions of 114Cd ions with 92Mo target nuclei at E/A=50 MeV are compa