ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum stress in chaotic billiards

128   0   0.0 ( 0 )
 نشر من قبل Ulrich Kuhl
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This article reports on a joint theoretical and experimental study of the Pauli quantum-mechanical stress tensor $T_{alpha beta}(x,y)$ for open two-dimensional chaotic billiards. In the case of a finite current flow through the system the interior wave function is expressed as $psi = u+iv$. With the assumption that $u$ and $v$ are Gaussian random fields we derive analytic expressions for the statistical distributions for the quantum stress tensor components $T_{alpha beta}$. The Gaussian random field model is tested for a Sinai billiard with two opposite leads by analyzing the scattering wave functions obtained numerically from the corresponding Schroedinger equation. Two-dimensional quantum billiards may be emulated from planar microwave analogues. Hence we report on microwave measurements for an open 2D cavity and how the quantum stress tensor analogue is extracted from the recorded electric field. The agreement with the theoretical predictions for the distributions for $T_{alpha beta}(x,y)$ is quite satisfactory for small net currents. However, a distinct difference between experiments and theory is observed at higher net flow, which could be explained using a Gaussian random field, where the net current was taken into account by an additional plane wave with a preferential direction and amplitude.



قيم البحث

اقرأ أيضاً

We calculate the density P(tau) of the eigenvalues of the Wigner-Smith time delay matrix for two-dimensional rectangular and circular billiards with one opening. For long times, the density of these so-called proper delay times decays algebraically, in contradistinction to chaotic quantum billiards for which P(tau) exhibits a long-time cut-off.
In this work, we perform a statistical study on Dirac Billiards in the extreme quantum limit (a single open channel on the leads). Our numerical analysis uses a large ensemble of random matrices and demonstrates the preponderant role of dephasing mec hanisms in such chaotic billiards. Physical implementations of these billiards range from quantum dots of graphene to topological insulators structures. We show, in particular, that the role of finite crossover fields between the universal symmetries quickly leaves the conductance to the asymptotic limit of unitary ensembles. Furthermore, we show that the dephasing mechanisms strikingly lead Dirac billiards from the extreme quantum regime to the semiclassical Gaussian regime.
An effective random matrix theory description is developed for the universal gap fluctuations and the ensemble averaged density of states of chaotic Andreev billiards for finite Ehrenfest time. It yields a very good agreement with the numerical calcu lation for Sinai-Andreev billiards. A systematic linear decrease of the mean field gap with increasing Ehrenfest time $tau_E$ is observed but its derivative with respect to $tau_E$ is in between two competing theoretical predictions and close to that of the recent numerical calculations for Andreev map. The exponential tail of the density of states is interpreted semi-classically.
We present a classical and quantum mechanical study of an Andreev billiard with a chaotic normal dot. We demonstrate that in general the classical dynamics of these normal-superconductor hybrid systems is mixed, thereby indicating the limitations of a widely used retracing approximation. We show that the mixed classical dynamics gives rise to a wealth of wavefunction phenomena, including periodic orbit scarring and localization of the wavefunction onto other classical phase space objects such as intermittent regions and quantized tori.
By an inductive reasoning, and based on recent results of the joint moments of proper delay times of open chaotic systems for ideal coupling to leads, we obtain a general expression for the distribution of the partial delay times for an arbitrary num ber of channels and any symmetry. This distribution was not completely known for all symmetry classes. Our theoretical distribution is verified by random matrix theory simulations of ballistic chaotic cavities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا