ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave-Absorption-Induced Heating of Surface State Electrons on Liquid 3He

110   0   0.0 ( 0 )
 نشر من قبل Denis Konstantinov
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A resonance-induced change in the resistivity of the surface state electrons (SSE) exposed to the microwave (MW) radiation is observed. The MW frequency corresponds to the transition energy between two lowest Rydberg energy levels. All measurements are done with electrons over liquid 3He in a temperature range 0.45-0.65 K, in which the electron relaxation time and the MW absorption linewidth are determined by collisions with helium vapor atoms. The input MW power is varied by two orders of magnitude, and the resistivity is always found to increase. This effect is attributed to the heating of electrons with the resonance MW radiation. The temperature and the momentum relaxation rate of the hot electrons are calculated as a function of the MW power in the cell, and the Rabi frequency is determined from the comparison of the theoretical result with the experiment. In addition, the broadening of the absorption signal caused by the heating is studied experimentally, and the results are found to be in good agreement with our calculations.



قيم البحث

اقرأ أيضاً

We have investigated the intersubband transitions of surface state electrons (SSE) on liquid $^3$He induced by microwave radiation at temperatures from 1.1 K down to 0.01 K. Above 0.4 K, the transition linewidth is proportional to the density of $^3$ He vapor atoms. This proportionality is explained well by Andos theory, in which the linewidth is determined by the electron - vapor atom scattering. However, the linewidth is larger than the calculation by a factor of 2.1. This discrepancy strongly suggests that the theory underestimates the electron - vapor atom scattering rate. At lower temperatures, the absorption spectrum splits into several peaks. The multiple peak structure is partly attributed to the spatial inhomogeneity of the static holding electric field perpendicular to the electron sheet.
102 - Solomon Duki , Harsh Mathur 2008
We consider the application of a small in-plane magnetic field to electrons on a helium surface in a perpendicular magnetic field. Certain states that were bound to the helium surface then dissolve into the continuum turning into long-lived resonance s. As a result microwave absorption lines acquire an asymmetric Fano lineshape that is tunable by varying the microwave polarisation or the in-plane magnetic field. Electrons trapped in a formerly bound state will tunnel off the surface of helium; we show that under suitable circumstances this ``radioactive decay can show damped oscillations rather than a simple exponential decay. The mechanism for oscillatory exponential decay is not specific to electrons on Helium and this effect may also be relevant elsewhere in physics.
Surface waves on both superfluid 3He and 4He were examined with the premise, that these inviscid media would represent ideal realizations for this fluid dynamics problem. The work on 3He is one of the first of its kind, but on 4He it was possible to produce much more complete set of data for meaningful comparison with theoretical models. Most measurements were performed at the zero temperature limit, meaning T < 100 mK for 4He and T ~ 100 {mu}K for 3He. Dozens of surface wave resonances, including up to 11 overtones, were observed and monitored as the liquid depth in the cell was varied. Despite of the wealth of data, perfect agreement with the constructed theoretical models could not be achieved.
145 - Emmanuel Baudin 2007
In a highly polarized liquid (laser-polarized 3He-4He mixtures in our experiment), dipolar magnetic interactions within the liquid introduce a significant nonlinear and nonlocal contribution to the Bloch equation that leads to instabilities during NM R evolution. We have launched a study of these instabilities using spin echo techniques. At high magnetizations, a simple 180 degree rf pulse fails to refocus magnetization, so we use a standard solid-state NMR pulse sequence: the magic sandwich. We report an experimental and numerical investigation of the effect of this sequence on unstable NMR evolution. Using a series of repeated magic sandwich sequences, the transverse magnetization lifetime can be increased by up to three orders of magnitude.
The Kitaev model on a honeycomb lattice predicts a paradigmatic quantum spin liquid (QSL) exhibiting Majorana Fermion excitations. The insight that Kitaev physics might be realized in practice has stimulated investigations of candidate materials, rec ently including alpha-RuCl3. In all the systems studied to date, non-Kitaev interactions induce magnetic order at low temperature. However, in-plane magnetic fields of roughly 8 Tesla suppress the long-range magnetic order in alpha-RuCl3 raising the intriguing possibility of a field-induced QSL exhibiting non-Abelian quasiparticle excitations. Here we present inelastic neutron scattering in alpha-RuCl3 in an applied magnetic field. At a field of 8 Tesla, the spin waves characteristic of the ordered state vanish throughout the Brillouin zone. The remaining single dominant feature of the response is a broad continuum centered at the Gamma point, previously identified as a signature of fractionalized excitations. This provides compelling evidence that a field-induced QSL state has been achieved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا