ترغب بنشر مسار تعليمي؟ اضغط هنا

Monitoring atom-atom entanglement and decoherence in a solvable tripartite open system in cavity QED

128   0   0.0 ( 0 )
 نشر من قبل Federico Casagrande
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a fully analytical solution of the dynamics of two strongly-driven atoms resonantly coupled to a dissipative cavity field mode. We show that an initial atom-atom entanglement cannot be increased. In fact, the atomic Hilbert space divides into two subspaces, one of which is decoherence free so that the initial atomic entanglement remains available for applications, even in presence of a low enough atomic decay rate. In the other subspace a measure of entanglement, decoherence, and also purity, are described by a similar functional behavior that can be monitored by joint atomic measurements. Furthermore, we show the possible generation of Schrodinger-cat-like states for the whole system in the transient regime, as well as of entanglement for the cavity field and the atom-atom subsystems conditioned by measurements on the complementary subsystem.



قيم البحث

اقرأ أيضاً

385 - C. Lazarou , B.M. Garraway 2008
We analyse the problem of a single mode field interacting with a pair of two level atoms. The atoms enter and exit the cavity at different times. Instead of using constant coupling, we use time dependent couplings which represent the spatial dependen ce of the mode. Although the system evolution is adiabatic for most of the time, a previously unstudied energy crossing plays a key role in the system dynamics when the atoms have a time delay. We show that conditional atom-cavity entanglement can be generated, while for large photon numbers the entangled system has a behaviour which can be mapped onto the single atom Jaynes-Cummings model. Exploring the main features of this system we propose simple and fairly robust methods for entangling atoms independently of the cavity, for quantum state mapping, and for implementing SWAP and C-NOT gates with atomic qubits.
The distributed quantum computation plays an important role in large-scale quantum information processing. In the atom-cavity-fiber system, we put forward two efficient proposals to prepare the steady entanglement of two distant atoms with dissipatio n. The atomic spontaneous emission and the loss of fiber are exploited actively as powerful resources, while the effect of cavity decay is inhibited by quantum Zeno dynamics and quantum-jump-based feedback control. These proposals do not require precisely tailored Rabi frequencies or coupling strength between cavity and fiber. Furthermore, we discuss the feasibility of extending the present schemes into the systems consisting of two atoms at the opposite ends of the $n$ cavities connected by $(n-1)$ fibers, and the corresponding numerical simulation reveals that a high fidelity remains achievable with current experimental parameters.
The quantum dynamics of a strongly driven, strongly coupled single-atom-cavity system is studied by evaluating time-dependent second- and third-order correlations of the emitted photons. The coherent energy exchange, first, between the atom and the c avity mode, and second, between the atom-cavity system and the driving laser, is observed. Three-photon detections show an asymmetry in time, a consequence of the breakdown of detailed balance. The results are in good agreement with theory and are a first step towards the control of a quantum trajectory at larger driving strength.
A dissipative scheme is proposed to prepare tripartite $W$ state in a Rydberg-atom-cavity system. It is an organic combination of quantum Zeno dynamics, Rydberg antiblockade and atomic spontaneous emission to turn the tripartite $W$ state into the un ique steady state of the whole system. The robustness against the loss of cavity and the feasibility of the scheme are demonstrated thoroughly by the current experimental parameters, which leads to a high fidelity above $98%$.
109 - T. Puppe , I. Schuster , P. Maunz 2007
Between mirrors, the density of electromagnetic modes differs from the one in free space. This changes the radiation properties of an atom as well as the light forces acting on an atom. It has profound consequences in the strong-coupling regime of ca vity quantum electrodynamics. For a single atom trapped inside the cavity, we investigate the atom-cavity system by scanning the frequency of a probe laser for various atom-cavity detunings. The avoided crossing between atom and cavity resonance is visible in the transmission of the cavity. It is also visible in the loss rate of the atom from the intracavity dipole trap. On the normal-mode resonances, the dominant contribution to the loss rate originates from dipole-force fluctuations which are dramatically enhanced in the cavity. This conclusion is supported by Monte-Carlo simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا