ترغب بنشر مسار تعليمي؟ اضغط هنا

Clique Minors in Cartesian Products of Graphs

416   0   0.0 ( 0 )
 نشر من قبل David Wood
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف David R. Wood




اسأل ChatGPT حول البحث

A clique minor in a graph G can be thought of as a set of connected subgraphs in G that are pairwise disjoint and pairwise adjacent. The Hadwiger number h(G) is the maximum cardinality of a clique minor in G. This paper studies clique minors in the Cartesian product G*H. Our main result is a rough structural characterisation theorem for Cartesian products with bounded Hadwiger number. It implies that if the product of two sufficiently large graphs has bounded Hadwiger number then it is one of the following graphs: - a planar grid with a vortex of bounded width in the outerface, - a cylindrical grid with a vortex of bounded width in each of the two `big faces, or - a toroidal grid. Motivation for studying the Hadwiger number of a graph includes Hadwigers Conjecture, which states that the chromatic number chi(G) <= h(G). It is open whether Hadwigers Conjecture holds for every Cartesian product. We prove that if |V(H)|-1 >= chi(G) >= chi(H) then Hadwigers Conjecture holds for G*H. On the other hand, we prove that Hadwigers Conjecture holds for all Cartesian products if and only if it holds for all G * K_2. We then show that h(G * K_2) is tied to the treewidth of G. We also develop connections with pseudoachromatic colourings and connected dominating sets that imply near-tight bounds on the Hadwiger number of grid graphs (Cartesian products of paths) and Hamming graphs (Cartesian products of cliques).



قيم البحث

اقرأ أيضاً

246 - Matthew Wales 2021
The Hadwiger number $h(G)$ is the order of the largest complete minor in $G$. Does sufficient Hadwiger number imply a minor with additional properties? In [2], Geelen et al showed $h(G)geq (1+o(1))ctsqrt{ln t}$ implies $G$ has a bipartite subgraph with Hadwiger number at least $t$, for some explicit $csim 1.276dotsc$. We improve this to $h(G) geq (1+o(1))tsqrt{log_2 t}$, and provide a construction showing this is tight. We also derive improved bounds for the topological minor variant of this problem.
We study several problems concerning convex polygons whose vertices lie in a Cartesian product (for short, grid) of two sets of n real numbers. First, we prove that every such grid contains a convex polygon with $Omega$(log n) vertices and that this bound is tight up to a constant factor. We generalize this result to d dimensions (for a fixed d $in$ N), and obtain a tight lower bound of $Omega$(log d--1 n) for the maximum number of points in convex position in a d-dimensional grid. Second, we present polynomial-time algorithms for computing the largest convex chain in a grid that contains no two points of the same x-or y-coordinate. We show how to efficiently approximate the maximum size of a supported convex polygon up to a factor of 2. Finally, we present exponential bounds on the maximum number of convex polygons in these grids, and for some restricted variants. These bounds are tight up to polynomial factors.
The distinguishing number of a graph $G$, denoted $D(G)$, is the minimum number of colors needed to produce a coloring of the vertices of $G$ so that every nontrivial isomorphism interchanges vertices of different colors. A list assignment $L$ on a g raph $G$ is a function that assigns each vertex of $G$ a set of colors. An $L$-coloring of $G$ is a coloring in which each vertex is colored with a color from $L(v)$. The list distinguishing number of $G$, denoted $D_{ell}(G)$ is the minimum $k$ such that every list assignment $L$ that assigns a list of size at least $k$ to every vertex permits a distinguishing $L$-coloring. In this paper, we prove that when and $n$ is large enough, the distinguishing and list-distinguishing numbers of $K_nBox K_m$ agree for almost all $m>n$, and otherwise differ by at most one. As a part of our proof, we give (to our knowledge) the first application of the Combinatorial Nullstellensatz to the graph distinguishing problem and also prove an inequality for the binomial distribution that may be of independent interest.
It is an open question whether the linear extension complexity of the Cartesian product of two polytopes P, Q is the sum of the extension complexities of P and Q. We give an affirmative answer to this question for the case that one of the two polytopes is a pyramid.
80 - Younjin Kim 2021
In 2009, Krivelevich and Sudakov studied the existence of large complete minors in $(t,alpha)$-expanding graphs whenever the expansion factor $t$ becomes super-constant. In this paper, we give an extension of the results of Krivelevich and Sudakov by investigating a connection between the existence of large complete minors in graphs and good vertex expansion properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا