ﻻ يوجد ملخص باللغة العربية
Time-odd densities and their effect on electric giant resonances are investigated within the self-consistent separable random-phase-approximation (SRPA) model for various Skyrme forces (SkT6, SkO, SkM*, SIII, SGII, SLy4, SLy6, SkI3). Time-odd densities restore Galilean invariance of the Skyrme functional, violated by the effective-mass and spin-orbital terms. In even-even nuclei these densities do not contribute to the ground state but can affect the dynamics. As a particular case, we explore the role of the current density in description of isovector E1 and isoscalar E2 giant resonances in a chain of Nd spherical and deformed isotopes with A=134-158. Relation of the current to the effective masses and relevant parameters of the Skyrme functional is analyzed. It is shown that current contribution to E1 and E2 resonances is generally essential and fully determined by the values and signs of the isovector and isoscalar effective-mass parameters of the force. The contribution is the same for all the isotope chain, i.e. for both standard and exotic nuclei.
A generalized parameterization of the Skyrme effective force is discussed. Preliminary results are presented for infinite symmetric and asymmetric nuclear matter. In particular, it is shown that an enlarged density dependence based on two terms allow
The density dependent term in Skyrme forces is essential, which simulates three-body and many-body correlations beyond the low-momentum two-body interaction. We speculate that a single density term may be insufficient and a higher-order density depen
[Background] Giant resonance (GR) is a typical collective mode of vibration. The deformation splitting of the isovector (IV) giant dipole resonance is well established. However, the splitting of GRs with other multipolarities is not well understood.
We use the finite amplitude method (FAM), an efficient implementation of the quasiparticle random phase approximation, to compute beta-decay rates with Skyrme energy-density functionals for 3983 nuclei, essentially all the medium-mass and heavy isoto
In these proceedings, we report first results for particle-number and angular-momentum projection of self-consistently blocked triaxial one-quasiparticle HFB states for the description of odd-A nuclei in the context of regularized multi-reference ene