ﻻ يوجد ملخص باللغة العربية
Tunnel ionization of room-temperature D$_2$ in an ultrashort (12 femtosecond) near infra-red (800 nm) pump laser pulse excites a vibrational wavepacket in the D2+ ions; a rotational wavepacket is also excited in residual D2 molecules. Both wavepacket types are collapsed a variable time later by an ultrashort probe pulse. We isolate the vibrational wavepacket and quantify its evolution dynamics through theoretical comparison. Requirements for quantum computation (initial coherence and quantum state retrieval) are studied using this well-defined (small number of initial states at room temperature, initial wavepacket spatially localized) single-electron molecular prototype by temporally stretching the pump and probe pulses.
We show how to emulate a conventional pump-probe scheme using a single frequency-chirped ultrashort UV pulse to obtain a time-resolved image of molecular ultrafast dynamics. The chirp introduces a spectral phase in time that encodes the delay between
The application of a matrix-based reconstruction protocol for obtaining Molecular Frame (MF) photoelectron angular distributions (MFPADs) from laboratory frame (LF) measurements (LFPADs) is explored. Similarly to other recent works on the topic of MF
Disentangling the dynamics of electrons and nuclei during nonadiabatic molecular transformations remains a considerable experimental challenge. Here we have investigated photoinduced electron transfer dynamics following a metal-to-ligand charge-trans
High-order harmonic generation in polyatomic molecules generally involves multiple channels, each associated with a different orbital. Their unambiguous assignment remains a major challenge for high-harmonic spectroscopy. Here we present a multi-moda
Rovibrational quantum states in the $X^1Sigma_g^+$ electronic ground state of H$_2$ are prepared in the $v=13$ vibrational level up to its highest bound rotational level $J=7$, and in the highest bound vibrational level $v=14$ (for $J=1$) by two-phot