ترغب بنشر مسار تعليمي؟ اضغط هنا

On the origin of the reversed vortex ratchet motion

357   0   0.0 ( 0 )
 نشر من قبل Alejandro Vladimiro Silhanek
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrate that the origin of multiply reversed rectified vortex motion in an asymmetric pinning landscape is a consequence not only of the vortex-vortex interactions but also essentially depends on the ratio between the characteristic interaction distance and the period of the asymmetric pinning potential. Our system consists of an Al film deposited on top of a square array of size-graded magnetic dots with a constant lattice period a=2mu m. Four samples with different periods of the size gradient d were investigated. For large d the dc voltage Vdc recorded under a sinusoidal ac excitation indicates that the average vortex drift is from bigger to smaller dots for all explored positive fields. As d is reduced a series of sign reversals in the dc response are observed as a function of field. We show that the number of sign reversals increases as d decreases. These findings are in agreement with recent computer simulations and illustrate the relevance of the different characteristic lengths for the vortex rectification effects.



قيم البحث

اقرأ أيضاً

We study the dynamics of vortices in an asymmetric ring channel driven by an external current I in a Corbino setup. The asymmetric potential can rectify the motion of vortices and cause a net flow without any unbiased external drive, which is called ratchet effect. With an applied ac current, the potential can rectify the motion of vortices in the channel and induce a dc net flow. We show that the net flow of vortices strongly depends on vortex density and frequency of the driving current. Depending on the density, we distinguish a single-vortex rectification regime (low density) determined by the potential-energy landscape inside each cell of the channel (i.e., hard and easy directions of motion) and multi-vortex, or collective, rectification (high density) when the interaction between vortices becomes important. The frequency of the driving ac current determines a possible distance that a vortex could move during one period. For high frequency current, vortices only oscillate in the triangular cell. For low frequency, the vortex angular velocity $omega$ increases nearly linearly until the driving force reaches the maximum friction force in the hard direction. Furthermore, the commensurability between the number of vortices and the number of cells results in a stepwise $omega-I$ curve. Besides the integer steps, i.e., the large steps found in the single vortex case, we also found fractional steps corresponding to fractional ratio between the numbers of vortices and triangular cells. The principal and fractional frequencies for different currents are found, when the net flow of vortices reaches the maximum that is proportional to the frequency when the density of vortices is low. We have performed preliminary measurements on a device containing a single weak-pinning circular ratchet channel in a Corbino geometry and observed a substantial asymmetric vortex response.
Guided and rectified motion of magnetic flux quanta are important effects governing the magneto-resistive response of nanostructured superconductors. While at low ac frequencies these effects are rather well understood, their manifestation at higher ac frequencies remains poorly investigated. Here, we explore the upper frequency limits for guided and rectified net motion of superconducting vortices in epitaxial Nb films decorated with ferromagnetic nanostripes. By combining broadband electrical spectroscopy with resistance measurements we reveal that the rectified voltage vanishes at a geometrically defined frequency of about 700 MHz. By contrast, vortex guiding-related low-ac-loss response persists up to about 2 GHz. This value corresponds to the depinning frequency $f_mathrm{d}^mathrm{s}$ associated with the washboard pinning potential induced by the nanostripes and exhibiting peaks for the commensurate vortex lattice configurations. Applying a sum of dc and microwave ac currents at an angle $alpha$ with respect to the nanostripes, the angle dependence of $f_mathrm{d}^mathrm{s}(alpha)$ has been found to correlate with the angle dependence of the depinning current. In all, our findings suggest that superconductors with higher $f_mathrm{d}^mathrm{s}$ should be favored for an efficient vortex manipulation in the GHz ac frequency range.
Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Us ing small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.
We investigated experimentally the frequency dependence of a superconducting vortex ratchet effect by means of electrical transport measurements and modeled it theoretically using the time dependent Ginzburg-Landau formalism. We demonstrate that the high frequency vortex behavior can be described as a discrete motion of a particle in a periodic potential, i.e. the so called stepper motor behavior. Strikingly, in the more conventional low frequency response a transition takes place from an Abrikosov vortex rectifier to a phase slip line rectifier. This transition is characterized by a strong increase in the rectified voltage and the appearance of a pronounced hysteretic behavior.
Arrays of Ni nanodots embedded in Nb superconducting films have been fabricated by sputtering and electron beam lithography techniques. The arrays are periodic triangular lattices of circular Ni dots arranged in a kagome-like pattern with broken refl ection symmetry. Relevant behaviors are found in the vortex lattice dynamics : i) At values lower than the first integer matching field, several fractional matching fields are present when the vortex lattice moves parallel or perpendicular to the reflection symmetry axis of the array showing a clear anisotropic character in the magnetoresistance curves, ii) injecting an ac current perpendicular to the reflection symmetry axis of the array yields an unidirectional motion of the vortex lattice (ratchet effect) as a result of the interaction between the whole vortex lattice and the asymmetric lattice of dots, iii) increasing the input current amplitudes the ratchet effect changes polarity independently of matching field values. These experimental results can be explained taking into account the vortex lattice density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا