ﻻ يوجد ملخص باللغة العربية
We experimentally demonstrate that the origin of multiply reversed rectified vortex motion in an asymmetric pinning landscape is a consequence not only of the vortex-vortex interactions but also essentially depends on the ratio between the characteristic interaction distance and the period of the asymmetric pinning potential. Our system consists of an Al film deposited on top of a square array of size-graded magnetic dots with a constant lattice period a=2mu m. Four samples with different periods of the size gradient d were investigated. For large d the dc voltage Vdc recorded under a sinusoidal ac excitation indicates that the average vortex drift is from bigger to smaller dots for all explored positive fields. As d is reduced a series of sign reversals in the dc response are observed as a function of field. We show that the number of sign reversals increases as d decreases. These findings are in agreement with recent computer simulations and illustrate the relevance of the different characteristic lengths for the vortex rectification effects.
We study the dynamics of vortices in an asymmetric ring channel driven by an external current I in a Corbino setup. The asymmetric potential can rectify the motion of vortices and cause a net flow without any unbiased external drive, which is called
Guided and rectified motion of magnetic flux quanta are important effects governing the magneto-resistive response of nanostructured superconductors. While at low ac frequencies these effects are rather well understood, their manifestation at higher
Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Us
We investigated experimentally the frequency dependence of a superconducting vortex ratchet effect by means of electrical transport measurements and modeled it theoretically using the time dependent Ginzburg-Landau formalism. We demonstrate that the
Arrays of Ni nanodots embedded in Nb superconducting films have been fabricated by sputtering and electron beam lithography techniques. The arrays are periodic triangular lattices of circular Ni dots arranged in a kagome-like pattern with broken refl