ﻻ يوجد ملخص باللغة العربية
A framework for discussing relationships between different types of games is proposed. Within the framework, quantum simultaneous games, finite quantum simultaneous games, quantum sequential games, and finite quantum sequential games are defined. In addition, a notion of equivalence between two games is defined. Finally, the following three theorems are shown: (1) For any quantum simultaneous game G, there exists a quantum sequential game equivalent to G. (2) For any finite quantum simultaneous game G, there exists a finite quantum sequential game equivalent to G. (3) For any finite quantum sequential game G, there exists a finite quantum simultaneous game equivalent to G.
A game-theoretic setting provides a mathematical basis for analysis of strategic interaction among competing agents and provides insights into both classical and quantum decision theory and questions of strategic choice. An outstanding mathematical q
In a two-stage repeated classical game of prisoners dilemma the knowledge that both players will defect in the second stage makes the players to defect in the first stage as well. We find a quantum version of this repeated game where the players deci
We study two forms of a symmetric cooperative game played by three players, one classical and other quantum. In its classical form making a coalition gives advantage to players and they are motivated to do so. However in its quantum form the advantag
In this work we study rank-one quantum games. In particular, we focus on the study of the computability of the entangled value $omega^*$. We show that the value $omega^*$ can be efficiently approximated up to a multiplicative factor of 4. We also stu
In evolutionary game theory an Evolutionarily Stable Strategy (ESS) is a refinement of the Nash equilibrium concept that is sometimes also recognized as evolutionary stability. It is a game-theoretic model, well known to mathematical biologists, that