ﻻ يوجد ملخص باللغة العربية
We study the structure of the magnetic elements in network-cell interiors. A quiet Sun area close to the disc centre was observed with the spectro-polarimeter of the Solar Optical Telescope on board the Hinode space mission, which yielded the best spatial resolution ever achieved in polarimetric data of the Fe I 630 nm line pair. For comparison and interpretation, we synthesize a similar data set from a three-dimensional magneto-hydrodynamic simulation. We find several examples of magnetic elements, either roundish (tube) or elongated (sheet), which show a central area of negative Stokes-V area asymmetry framed or surrounded by a peripheral area with larger positive asymmetry. This pattern was predicted some eight years ago on the basis of numerical simulations. Here, we observationally confirm its existence for the first time. We gather convincing evidence that this pattern of Stokes-V area asymmetry is caused by the funnel-shaped boundary of magnetic elements that separates the flux concentration from the weak-field environment. We also conclude that this kind of magnetic element of the internetwork is accompanied by electric current sheets.
In this work, we focus in the magnetic evolution of a small region as seen by Hinode-SP during the time interval of about one hour. High-cadence LOS magnetograms and velocity maps were derived, allowing the study of different small-scale processes su
The motions of small-scale magnetic flux elements in the solar photosphere can provide some measure of the Lagrangian properties of the convective flow. Measurements of these motions have been critical in estimating the turbulent diffusion coefficien
We use sequences of images and magnetograms from Hinode to study magnetic elements in internetwork parts of the quiet solar photosphere. Visual inspection shows the existence of many long-lived (several hours) structures that interact frequently, and
Convective flows are known as the prime means of transporting magnetic fields on the solar surface. Thus, small magnetic structures are good tracers of the turbulent flows. We study the migration and dispersal of magnetic bright features (MBFs) in in
One of the most important features in the solar atmosphere is magnetic network and its rela- tionship with the transition region (TR), and coronal brightness. It is important to understand how energy is transported into the corona and how it travels