ترغب بنشر مسار تعليمي؟ اضغط هنا

A new analysis method to determine beta-decay half-lives in experiments with complex background

224   0   0.0 ( 0 )
 نشر من قبل Karl-Heinz Schmidt
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reports the first application of a new technique to measure the beta-decay half -lives of exotic nuclei in complex background conditions. Since standard tools were not adapted to extract the relevant information, a new analysis method was developed. The time distribution of background events is established by recording time correlations in backward time. The beta half lives of the nuclides and the detection efficiency of the set-up are determined simultaneously from a least-squares fit of the ratio of the time-correlation spectra recorded in forward and in backward time, using numerical functions. The necessary numerical functions are calculated in a Monte-Carlo code using the known operation parameters of the experiment and different values for the two free parameters, half-life and detection efficiency, as input parameters.



قيم البحث

اقرأ أيضاً

Active background reduction in high resolution calorimeters is a promising approach to achieve ultimate sensitivity in neutrinoless double beta decay experiments. We propose Cerenkov emission from beta rays in bolometric crystals as a viable alternat ive to scintillation. This novel approach could broaden the range of materials of interest for calorimetric searches of the double beta decay. We discuss the optical properties of TeO$_2$ crystals, as a show case.
130 - R. Arnold , C. Augier , J. Baker 2003
The background induced by radioactive impurities of $^{208}rm Tl$ and $^{214}rm Bi$ in the source of the double beta experiment NEMO-3 has been investigated. New methods of data analysis which decrease the background from the above mentioned contamin ation are identified. The techniques can also be applied to other double beta decay experiments capable of measuring independently the energies of the two electrons.
Artificial neural networks are trained by a standard backpropagation learning algorithm with regularization to model and predict the systematics of -decay of heavy and superheavy nuclei. This approach to regression is implemented in two alternative m odes: (i) construction of a statistical global model based solely on available experimental data for alpha-decay half-lives, and (ii) modeling of the {it residuals} between the predictions of state-of-the-art phenomenological model (specifically, the effective liquid-drop model (ELDM)) and experiment. Analysis of the results provide insights on the strengths and limitations of this application of machine learning (ML) to exploration of the nuclear landscape in regions beyond the valley of stability.
111 - S.R. Elliott , H. Ejiri 2017
Solar neutrinos interact within double-beta decay (BB) detectors and contribute to backgrounds for BB experiments. Background contributions due to charge-current solar neutrino interactions with BB nuclei of $^{76}$Ge, $^{82}$Se, $^{100}$Mo, $^{130}$ Te, $^{136}$Xe, and $^{150}$Nd are evaluated. They are shown to be significant for future high-sensitivity BB experiments that may search for Majorana neutrino masses in the inverted-hierarchy mass region. The impact of solar neutrino backgrounds and their reduction are discussed for future BB experiments.
109 - A. Ravlic , E. Yuksel , Y. F. Niu 2020
$beta$-decay properties of nuclei are investigated within the relativistic nuclear energy density functional framework by varying the temperature and density, conditions relevant to the final stages of stellar evolution. Both thermal and nuclear pair ing effects are taken into account in the description of nuclear properties and in the finite temperature proton-neutron relativistic quasiparticle random-phase approximation (FT-PNRQRPA) to calculate the relevant allowed and first-forbidden transitions in the $beta$-decay. The temperature and density effects are studied on the $beta$-decay half-lives between temperatures $T = 0-1.5$ MeV, and at densities $rho Y_e = 10^7$ g/cm${}^3$ and $10^9$ g/cm${}^3$. The relevant Gamow-Teller transitions are also investigated for Ti, Fe, Cd, and Sn isotopic chains at finite temperatures. We find that the $beta$-decay half-lives increase with increasing density $rho Y_e$, whereas half-lives generally decrease with increasing temperature. It is shown that the temperature effects decrease the half-lives considerably in nuclei with longer half-lives at zero temperature, while only slight changes for nuclei with short half-lives are obtained. We also show the importance of including the de-excitation transitions in the calculation of the $beta$-decay half-lives at finite temperatures. Comparing the FT-PNQRPA results with the shell-model calculations for $pf-$shell nuclei, a reasonable agreement is obtained for the temperature dependence of $beta$-decay rates. Finally, large-scale calculations of $beta$-decay half-lives are performed at temperatures $T_9(text{K}) = 5$ and $T_9(text{K}) = 10$ and densities $rho Y_e = 10^7$ g/cm${}^3$ and $10^9$ g/cm${}^3$ for even-even nuclei in the range $8 leq Z leq 82$, relevant for astrophysical nucleosynthesis mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا