ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermoelectrical manipulation of nano-magnets

82   0   0.0 ( 0 )
 نشر من قبل Anatoli Kadigrobov
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a device that can operate as a magneto-resistive switch or oscillator. The device is based on a spin-thermo-electronic control of the exchange coupling of two strong ferromagnets through a weakly ferromagnetic spacer. We show that the local Joule heating due to a high concentration of current in a magnetic point contact or a nanopillar can be used to reversibly drive the weak ferromagnet through its Curie point and thereby exchange-decouple the strongly ferromagnetic layers, which have an antiparallel ground state. Such a spin-thermionic parallel-to-antiparallel switching causes magnetoresistance oscillations where the frequency can be controlled by proper biasing from essentially DC to GHz.



قيم البحث

اقرأ أيضاً

We investigate the interplay between the thermodynamic properties and spin-dependent transport in a mesoscopic device based on a magnetic multilayer (F/f/F), in which two strongly ferromagnetic layers (F) are exchange-coupled through a weakly ferroma gnetic spacer (f) with the Curie temperature in the vicinity of room temperature. We show theoretically that the Joule heating produced by the spin-dependent current allows a spin-thermo-electronic control of the ferromagnetic-to-paramagnetic (f/N) transition in the spacer and, thereby, of the relative orientation of the outer F-layers in the device (spin-thermo-electric manipulation of nanomagnets). Supporting experimental evidence of such thermally controlled switching from parallel to antiparallel magnetization orientations in F/f(N)/F sandwiches is presented. Furthermore, we show theoretically that local Joule heating due to a high concentration of current in a magnetic point contact or a nanopillar can be used to reversibly drive the weakly ferromagnetic spacer through its Curie point and thereby exchange couple and decouple the two strongly ferromagnetic F-layers. For the devices designed to have an antiparallel ground state above the Curie point of the spacer, the associated spin-thermionic parallel-to-antiparallel switching causes magneto-resistance oscillations whose frequency can be controlled by proper biasing from essentially DC to GHz. We discuss in detail an experimental realization of a device that can operate as a thermo-magneto-resistive switch or oscillator.
Spin waves (SWs), the collective precessional motion of spins in a magnetic system, have been proposed as a promising alternative system with low-power consumption for encoding information. Spin Hall nano-oscillator (SHNO), a new-type spintronic nano -device, can electrically excite and control spin waves in both nanoscale magnetic metals and insulators with low damping by the spin current due to spin Hall effect. Here, we will review recent progress about spin-wave excitation and experimental parameters dependent spectrum in SHNOs. The nanogap SHNOs based on in-plane magnetization Py/Pt exhibits a nonlinear self-localized bullet soliton localized at the center of the gap between the electrodes and a secondary high-frequency mode which coexists with the primary bullet mode at higher currents. While in the nanogap SHNOs with strong perpendicular magnetic anisotropy (PMA), besides both nonlinear bullet soliton and propagating spin-wave mode are achieved and controlled by varying the external magnetic field and current, the magnetic bubble skyrmion mode also can be excited at a low in-plane magnetic field. These SW modes show thermal-induced mode hopping behavior at high temperature due to the coupling between modes mediated by thermal-magnon-mediated scattering. Moreover, thanks to PMA-induced effective field, a single coherent mode also can be achieved without applying an external magnetic field. The strong nonlinear effect of spin-waves makes SHNOs easy to achieve synchronization with external microwave signals or mutual synchronization between multiple oscillators with improving the coherence and power of oscillation modes significantly. Spin-waves in SHNOs with an external free magnetic layer have a wide range of applications from as a nanoscale signal source of low-power consumption magnonic devices to spin-based neuromorphic computing systems in the field of artificial intelligence.
We report on the isolation of single SiV$^-$ centers in nanodiamonds. We observe the fine-structure of single SiV$^-$ center with improved inhomogeneous ensemble linewidth below the excited state splitting, stable optical transitions, good polarizati on contrast and excellent spectral stability under resonant excitation. Based on our experimental results we elaborate an analytical strain model where we extract the ratio between strain coefficients of excited and ground states as well the intrinsic zero-strain spin-orbit splittings. The observed strain values are as low as best values in low-strain bulk diamond. We achieve our results by means of H-plasma treatment of the diamond surface and in combination with resonant and off-resonant excitation. Our work paves the way for indistinguishable, single photon emission. Furthermore, we demonstrate controlled nano-manipulation via atomic force microscope cantilever of 1D- and 2D-alignments with a so-far unreached accuracy of about 10nm, as well as new tools including dipole rotation and cluster decomposition. Combined, our results show the potential to utilize SiV$^-$ centers in nanodiamonds for the controlled interfacing via optical coupling of individually well-isolated atoms for bottom-up assemblies of complex quantum systems.
118 - Myriam P. Sarachik 2013
The reversal of the magnetization of crystals of molecular magnets that have a large spin and high anisotropy barrier generally proceeds below the blocking temperature by quantum tunneling. This is manifested as a series of controlled steps in the hy steresis loops at resonant values of the magnetic field where energy levels on opposite sides of the barrier cross. An abrupt reversal of the magnetic moment of the entire crystal can occur instead by a process commonly referred to as a magnetic avalanche, where the molecular spins reverse along a deflagration front that travels through the sample at subsonic speed. In this chapter, we review experimental results obtained to date for magnetic deflagration in molecular nanomagnets.
Recent years have witnessed significant progresses in realizing skyrmions in chiral magnets1-4 and asymmetric magnetic multilayers5-13, as well as their electrical manipulation2,7,8,10. Equally important, thermal generation, manipulation and detectio n of skyrmions can be exploited for prototypical new architecture with integrated computation14 and energy harvesting15. It has yet to verify if skyrmions can be purely generated by heating16,17, and if their resultant direction of motion driven by temperature gradients follows the diffusion or, oppositely, the magnonic spin torque17-21. Here, we address these important issues in microstructured devices made of multilayers: (Ta_CoFeB_MgO)15, (Pt_CoFeB_MgO_Ta)15 and (Pt_Co_Ta)15 integrated with on-chip heaters, by using a full-field soft X-ray microscopy. The thermal generation of densely packed skyrmions is attributed to the low energy barrier at the device edge, together with the thermally induced morphological transition from stripe domains to skyrmions. The unidirectional diffusion of skyrmions from the hot region towards the cold region is experimentally observed. It can be theoretically explained by the combined contribution from repulsive forces between skyrmions, and thermal spin-orbit torques in competing with magnonic spin torques17,18,20,21 and entropic forces22. These thermally generated skyrmions can be further electrically detected by measuring the accompanied anomalous Nernst voltages23. The on-chip thermoelectric generation, manipulation and detection of skyrmions could open another exciting avenue for enabling skyrmionics, and promote interdisciplinary studies among spin caloritronics15, magnonics24 and skyrmionics3,4,12.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا