ﻻ يوجد ملخص باللغة العربية
Let M(1) be the mod 2 Moore spectrum. J.F. Adams proved that M(1) admits a minimal v_1-self map v_1^4: Sigma^8 M(1) -> M(1). Let M(1,4) be the cofiber of this self-map. The purpose of this paper is to prove that M(1,4) admits a minimal v_2-self map of the form v_2^32: Sigma^192 M(1,4) -> M(1,4). The existence of this map implies the existence of many 192-periodic families of elements in the stable homotopy groups of spheres.
We make a conjecture about all the relations in the $E_2$ page of the May spectral sequence and prove it in a subalgebra which covers a large range of dimensions. We conjecture that the $E_2$ page is nilpotent free and also prove it in this subalgebr
We study modular approximations Q(l), l = 3,5, of the K(2)-local sphere at the prime 2 that arise from l-power degree isogenies of elliptic curves. We develop Hopf algebroid level tools for working with Q(l) and record Hill, Hopkins, and Ravenels com
In this note, we compute the image of the $alpha$-family in the homotopy of the $K(2)$-local sphere at the prime $p=2$ by locating its image in the algebraic duality spectral sequence. This is a stepping stone for the computation of the homotopy grou
Explicit calculations of the algebraic theory of power operations for a specific Morava E-theory spectrum are given, without detailed proofs.
We give a calculation of Picard groups of K(2)-local invertible spectra and of E(2)-local invertible spectra, both at the prime 3. The main contribution of this paper is to calculation the subgroup of invertible spectra with the same Morava module as a sphere.