ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure of hybrid protoneutron stars within the Nambu--Jona-Lasinio model

210   0   0.0 ( 0 )
 نشر من قبل Fiorella Burgio
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the structure of protoneutron stars (PNS) formed by hadronic and quark matter in $beta$-equilibrium described by appropriate equations of state (EOS). For the hadronic matter, we use a finite temperature EOS based on the Brueckner-Bethe-Goldstone many-body theory, with realistic two- and three-body forces. For the quark sector, we employ the Nambu--Jona-Lasinio model. We find that the maximum allowed masses are comprised in a narrow range around 1.8 solar masses, with a slight dependence on the temperature. Metastable hybrid protoneutron stars are not found.



قيم البحث

اقرأ أيضاً

We study the chiral phase transition inside a rotating cylinder within the framework of the Namb--Jona-Lasinio model. A spectral boundary condition is imposed to avoid faster than light. We investigate how the geometry of the cylinder and rotation in fluence the chiral phase transition at finite temperature and chemical potential. The inhomogeneous effects caused by the finite size and rotation are also taken into account. It is found that finite size will reduce the chiral transition temperature and raises the chiral transition chemical potential, while the rotation reduces both the chiral transition temperature and chemical potential. In addition, we discuss the implications of our results in heavy-ion collisions and equation of states of neutron star.
We estimate the axion properties i.e. its mass, topological susceptibility and the self-coupling within the framework of Polyakov loop enhanced Nambu-Jona-Lasinio (PNJL) model at finite temperature and quark chemical potential. PNJL model, where quar ks couple simultaneously to the chiral condensate and to a background temporal quantum chromodynamics (QCD) gauge field, includes two important features of QCD phase transition, i.e. deconfinement and chiral symmetry restoration. The Polyakov loop in PNJL model plays an important role near the critical temperature. We have shown significant difference in the axion properties calculated in PNJL model compared to the same obtained using Nambu-Jona-Lasinio (NJL) model. We find that both the mass of the axion and its self-coupling are correlated with the chiral transition as well as the confinement-deconfinement transition. We have also estimated the axion properties at finite chemical potential. Across the QCD transition temperature and/or quark chemical potential axion mass and its self-coupling also changes significantly. Since the PNJL model includes both the fermionic sector and the gauge fields, it can give reliable estimates of the axion properties, i.e. its mass and the self-coupling in a hot and dense QCD medium. We also compare our results with the lattice QCD results whenever available.
The effects of meson fluctuations are studied in a nonlocal generalization of the Nambu-Jona-Lasinio model, by including terms of next-to-leading order (NLO) in 1/N_c. In the model with only scalar and pseudoscalar interactions NLO contributions to t he quark condensate are found to be very small. This is a result of cancellation between virtual mesons and Fock terms, which occurs for the parameter sets of most interest. In the quark self-energy, similar cancellations arise in the tadpole diagrams, although not in other NLO pieces which contribute at the sim 25% level. The effects on pion properties are also found to be small. NLO contributions from real $pipi$ intermediate states increase the sigma meson mass by $sim 30%$. In an extended model with vector and axial interactions, there are indications that NLO effects could be larger.
We investigate the hadron-quark phase transition inside neutron stars and obtain mass-radius relations for hybrid stars. The equation of state for the quark phase using the standard NJL model is too soft leading to an unstable star and suggesting a m odification of the NJL model by introducing a momentum cutoff dependent on the chemical potential. However, even in this approach, the instability remains. In order to remedy the instability we suggest the introduction of a vector coupling in the NJL model, which makes the EoS stiffer, reducing the instability. We conclude that the possible existence of quark matter inside the stars require high densities, leading to very compact stars.
The formalism of Riemannian geometry is applied to study the phase transitions in Nambu -Jona Lasinio (NJL) model. Thermodynamic geometry reliably describes the phase diagram, both in the chiral limit and for finite quark masses. The comparison betwe en the geometrical study of NJL model and of (2+1) Quantum Chromodynamics at high temperature and small baryon density shows a clear connection between chiral symmetry restoration/breaking and deconfinement/confinement regimes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا