ترغب بنشر مسار تعليمي؟ اضغط هنا

Silicate dust in the environment of RS Ophiuchi following the 2006 eruption

352   0   0.0 ( 0 )
 نشر من قبل Nye Evans
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Evans




اسأل ChatGPT حول البحث

We present further Spitzer Space Telescope observations of the recurrent nova RS Ophiuchi, obtained over the period 208-430 days after the 2006 eruption. The later Spitzer IRS data show that the line emission and free-free continuum emission reported earlier is declining, revealing incontrovertible evidence for the presence of silicate emission features at 9.7 and 18microns. We conclude that the silicate dust survives the hard radiation impulse and shock blast wave from the eruption. The existence of the extant dust may have significant implications for understanding the propagation of shocks through the red giant wind and likely wind geometry.



قيم البحث

اقرأ أيضاً

We present near infrared spectroscopy of the recurrent nova RS Oph obtained on several occasions after its latest outburst in 2006 February. The 1-5 mircon spectra are dominated by the red giant, but the H I, He I, and coronal lines present during th e eruption are present in all our observations. From the fits of the computed infrared spectral energy distributions to the observed fluxes we find T_eff=4200+/-200,K for the red giant. The first overtone CO bands at 2.3 micron, formed in the atmosphere of the red giant, are variable. The spectra clearly exhibit an infrared excess due to dust emission longward of 5 micron; we estimate an effective temperature for the emitting dust shell of 500K, and find that the dust emission is also variable, being beyond the limit of detection in 2007. Most likely, the secondary star in RS Oph is intrinsically variable.
We present Spitzer Space Telescope and complementary ground-based infrared observations of the recurrent nova RS Ophiuchi, obtained over the period 64-111 days after the 2006 eruption. The Spitzer IRS data show a rich emission line spectrum superimpo sed on a free-free continuum. The presence of fine structure and coronal infrared lines lead us to deduce that there are at least two temperatures (1.5e5K and 9e5K) in the ejecta/wind environment, and that the electron density in the `cooler region is 2.2e5 cm-3. The determination of elemental abundances is not straightforward but on the assumption that the Ne and O fine structure lines arise in the same volume of the ejecta, the O/Ne ratio is >~0.6 by number.
We report MERLIN, VLA, OCRA-p, VLBA, Effelsberg and GMRT observations beginning 4.5 days after the discovery of RS Ophiuchi undergoing its 2006 recurrent nova outburst. Observations over the first 9 weeks are included, enabling us to follow spectral development throughout the three phases of the remnant development. We see dramatic brightening on days 4 to 7 at 6 GHz and an accompanying increase in other bands, particularly 1.46 GHz, consistent with transition from the initial free expansion phase to the adiabatic expansion phase. This is complete by day 13 when the flux density at 5 GHz is apparently declining from an unexpectedly early maximum (compared with expectations from observations of the 1985 outburst). The flux density recovered to a second peak by approximately day 40, consistent with behaviour observed in 1985. At all times the spectral index is consistent with mixed non-thermal and thermal emission. The spectral indices are consistent with a non-thermal component at lower frequencies on all dates, and the spectral index changes show that the two components are clearly variable. The estimated extent of the emission at 22 GHz on day 59 is consistent with the extended east and west features seen at 1.7 GHz with the VLBA on day 63 being entirely non-thermal. We suggest a two-component model, consisting of a decelerating shell seen in mixed thermal and non-thermal emission plus faster bipolar ejecta generating the non-thermal emission, as seen in contemporaneous VLBA observations. Our estimated ejecta mass of 4+/-2x10^{-7} M_odot is consistent with a WD mass of 1.4 M_odot. It may be that this ejecta mass estimate is a lower limit, in which case a lower WD mass would be consistent with the data.
Swift X-ray observations of the ~60 day super-soft phase of the recurrent nova RS Ophiuchi 2006 show the progress of nuclear burning on the white dwarf in exquisite detail. First seen 26 days after the optical outburst, this phase started with extrem e variability likely due to variable absorption, although intrinsic white dwarf variations are not excluded. About 32 days later, a steady decline in count-rate set in. NLTE model atmosphere spectral fits during the super-soft phase show that the effective temperature of the white dwarf increases from ~65 eV to ~90 eV during the extreme variability phase, falling slowly after about day 60 and more rapidly after day 80. The bolometric luminosity is seen to be approximately constant and close to Eddington from day 45 up to day 60, the subsequent decline possibly signalling the end of extensive nuclear burning. Before the decline, a multiply-periodic, ~35 s modulation of the soft X-rays was present and may be the signature of a nuclear fusion driven instability. Our measurements are consistent with a white dwarf mass near the Chandrasekhar limit; combined with a deduced accumulation of mass transferred from its binary companion, this leads us to suggest RS Oph is a strong candidate for a future supernova explosion. The main uncertainty now is whether the WD is the CO type necessary for a SN Ia. This may be confirmed by detailed abundance analyses of spectroscopic data from the outbursts.
Near-infrared spectra are presented for the recent 2006 outburst of the recurrent nova RS Ophiuchi (RS Oph).We report the rare detection of an infrared shock wave as the nova ejecta plows into the pre-existing wind of the secondary in the RS Oph syst em consisting of a white dwarf (WD) primary and a red giant secondary. The evolution of the shock is traced through a free expansion stage to a decelerative phase. The behavior of the shock velocity with time is found to be broadly consistent with current shock models. The present observations also imply that the WD in the RS Oph system has a high mass indicating that it could be a potential SNIa candidate. We also discuss the results from a recent study showing that the near-IR continuum from the recent RS Oph eruption does not originate in an expanding fireball. However, the present work shows that the IR line emission does have an origin in an expanding shock wave.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا