ﻻ يوجد ملخص باللغة العربية
Finite dimensional modular Lie superalgebras over algebraically closed fields with indecomposable Cartan matrices are classified under some technical, most probably inessential, hypotheses. If the Cartan matrix is invertible, the corresponding Lie superalgebra is simple otherwise the quotient of the derived Lie superalgebra modulo center is simple (if its rank is greater than 1). Eleven new exceptional simple modular Lie superalgebras are discovered. Several features of classic notions, or notions themselves, are clarified or introduced, e.g., Cartan matrix, sever
For modular Lie superalgebras, new notions are introduced: Divided power homology and divided power cohomology. For illustration, we give presentations (in terms of analogs of Chevalley generators) of finite dimensional Lie (super)algebras with indec
For each of the exceptional Lie superalgebras with indecomposable Cartan matrix, we give the explicit list of its roots of and the corresponding Chevalley basis for one of the inequivalent Cartan matrices, the one corresponding to the greatest number
A way to construct (conjecturally all) simple finite dimensional modular Lie (super)algebras over algebraically closed fields of characteristic not 2 is offered. In characteristic 2, the method is supposed to give only simple Lie (super)algebras grad
For the exceptional finite-dimensional modular Lie superalgebras $mathfrak{g}(A)$ with indecomposable Cartan matrix $A$, and their simple subquotients, we computed non-isomorphic Lie superalgebras constituting the homologies of the odd elements with
In the article at hand, we sketch how, by utilizing nilpotency to its fullest extent (Engel, Super Engel) while using methods from the theory of universal enveloping algebras, a complete description of the indecomposable representations may be reache