ﻻ يوجد ملخص باللغة العربية
We present the complete toroidal compactification of the Gauss-Bonnet Lagrangian from D dimensions to (D-n) dimensions. Our goal is to investigate the resulting action from the point of view of the U-duality symmetry SL(n+1,R) which is present in the tree-level Lagrangian when D-n=3. The analysis builds upon and extends the investigation of the paper [arXiv:0706.1183], by computing in detail the full structure of the compactified Gauss-Bonnet term, including the contribution from the dilaton exponents. We analyze these exponents using the representation theory of the Lie algebra sl(n+1,R) and determine which representation seems to be the relevant one for quadratic curvature corrections. By interpreting the result of the compactification as a leading term in a large volume expansion of an SL(n+1,Z)-invariant action, we conclude that the overall exponential dilaton factor should not be included in the representation structure. As a consequence, all dilaton exponents correspond to weights of sl(n+1,R), which, nevertheless, remain on the positive side of the root lattice.
We study the effect of the Gauss-Bonnet term on vacuum decay process in the Coleman-De Luccia formalism. The Gauss-Bonnet term has an exponential coupling with the real scalar field, which appears in the low energy effective action of string theories
Braneworld inflation is a phenomenology related to string theory that describes high-energy modifications to general relativistic inflation. The observable universe is a braneworld embedded in 5-dimensional anti de Sitter spacetime. Whe the 5-dimensi
The effect of the Gauss-Bonnet term on the existence and dynamical stability of thin-shell wormholes as negative tension branes is studied in the arbitrary dimensional spherically, planar, and hyperbolically symmetric spacetimes. We consider radial p
We construct uniform black-string solutions in Einstein-Gauss-Bonnet gravity for all dimensions $d$ between five and ten and discuss their basic properties. Closed form solutions are found by taking the Gauss-Bonnet term as a perturbation from pure E
The supersymmetrization of curvature squared terms is important in the study of the low-energy limit of compactified superstrings where a distinguished role is played by the Gauss-Bonnet combination, which is ghost-free. In this letter, we construct