ﻻ يوجد ملخص باللغة العربية
We present preliminary numerical studies in Lattice QCD related to the intrinsic transverse momentum distribution of partons in the nucleon. We employ non-local operators, consisting of spatially separated quark creation and annihilation operators connected by a straight Wilson line. A clear signal is already obtained from a small number of configurations at a pion mass of about 600 MeV. As an example, we demonstrate that we can obtain the first x-moment of the transverse momentum dependent parton distribution function f_1^{n=1}(k_T) from our data. Our results, which are not renormalized, show a Gaussian-like distribution. The root mean squared transverse momentum is about 560 MeV for a Gaussian fit, close to phenomenological values.
Transverse momentum dependent parton distribution functions (TMDPDFs) encode information about the intrinsic motion of quarks inside the nucleon. They are important non-perturbative ingredients in our understanding of, e.g., azimuthal asymmetries and
This work applies lattice QCD to compute quark momentum distributions in the nucleon. We explore a novel approach based on non-local operators in order to analyze transverse momentum dependent parton distribution functions, which encode information a
We discuss in detail a method to study transverse momentum dependent parton distribution functions (TMDs) using lattice QCD. To develop the formalism and to obtain first numerical results, we directly implement a bi-local quark-quark operator connect
This work presents the first calculation in lattice QCD of three moments of spin-averaged and spin-polarized generalized parton distributions in the proton. It is shown that the slope of the associated generalized form factors decreases significantly
A better understanding of transverse momentum (k_T-) dependent quark distributions in a hadron is needed to interpret several experimentally observed large angular asymmetries and to clarify the fundamental role of gauge links in non-abelian gauge th